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Abstract

We introduce trading rules which are selected by an arti�cially

intelligent agent who learns from experience - an Arti�cial Techni-

cal Analyst. It is shown that these rules can lead to the recognition

of subtle regularities in return processes whilst reducing data-mining

problems inherent in simple rules proposed as model evaluation de-

vices. The relationship between the e¢ciency of �nancial markets

and the e¢cacy of technical analysis is investigated and it is shown

that the Arti�cial Technical Analyst can be used to provide a quanti�-

able measure of market e¢ciency. The measure is applied to the DJIA

daily index from 1962 to 1986 and implications for the behaviour of

traditional agents are derived.
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1 Introduction

In the last few years, increasing evidence that technical trading rules can

detect nonlinearities in �nancial time series has renewed interest in technical

analysis (see e.g. Brock, Lakonishok and LeBaron, 1992 (henceforth Brock et

al.), Neftci (1991), Levich et al. (1993) and LeBaron (1998)). Based on this

evidence, much research e¤ort has also been devoted to examining whether

trading rules can be used to evaluate and create improved time-series and

theory driven returns models (e.g. Hudson et al. (1996), Kho (1996), Gencay

(1996)).

The term technical analysis is used in these empirical studies to refer

to the practice of investing according to well-known technical trading rules.

However, in certain areas of �nancial theory (particularly asymmetric in-

formation models) technical analysis is de�ned to be any conditioning of

expectations on past prices (e.g. Brown and Jennings (1989), Treynor and

Ferguson (1985)). Indeed, noisy asymmetric information models in which

rational agents condition on past prices re�ecting (a noisy signal of) each

others information provide one explanation of why technical analysis is ob-

served. Unfortunately though, theoretical models which lead to conditioning

consistent with the precise form of observed technical trading rules are cur-

rently unavailable: there is as yet no positive model of investment behaviour

which leads to actions similar to those of real Technical Analysts.

This paper models Technical Analysts as agents whos� actions are de facto

consistent with observed technical trading rules. Our terminology therefore

will be consistent with that of researchers examining empirical aspects of

technical analysis and as such will be more narrow than that of theoretical

models. The objective however is not the modelling of Technical Analysts

per se; rather, it is to use our model of a Technical Analyst to derive a more

sophisticated approach to examining the properties of trading rules. It is

somewhat surprising that some studies have found a single arbitrarily se-

lected rule to be �e¤ective� over long periods (e.g. Brock et al.) given that

real Technical Analysts use di¤erent rules in di¤erent times and in di¤erent

markets. In order to truly evaluate the e¤ectiveness of technical analysis as

implemented we need a model of how analysts adapt to the market environ-

ment.

We provide such a model by introducing Technical Analysts who are

arti�cially intelligent agents (see e.g. Marimon et al. 1990). In Section

2 technical analysis is introduced in the simple case where agents are fully
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informed and circumstances in which it may be a rational activity are derived.

This is a necessary step so that in Section 3 we can introduce a model of a

Technical Analyst who learns from his environment - an Arti�cial Technical

Analyst. This agent chooses amongst technical trading rules and his actions

are the outcome of an explicit decision problem which formalises the loose

notion of what it means for a rule to be �good� or optimal (examples of

applications in which a metric for comparing rules is implicit are Allen F.

and Karjalainen 1996, Neely et al : 1996, Pictet et al. 1996, Taylor 1994,

Allen P. and Phang 1994, Chiang 1992, Pau 1991). This formalisation is

important because it indicates that an explicit measure of rule optimality

can and should be derived from a speci�c utility maximisation problem and

that a rule which is optimal for di¤erent types of investors (in terms of risk-

aversion and budget constraints) will not usually exist.

A standard application of arti�cially intelligent agents is to design them

so that their actions can reveal interesting aspects of the environment in
which they are placed (see Sargent 1993, pp. 152-160). In this vein, we will
use our Arti�cial Technical Analysts to reveal certain regularities in �nancial
data. In particular, in Section 4 they will be used to characterise �nancial
series as in Brock et al., showing that they can provide characterisations

which are more convincing and powerful than those previously attainable.
In Section 5 we propose a notion of weak market e¢ciency which is de�ned

almost exclusively as a time series property on prices and show that empirical
tests of this condition can be based on the returns obtained by the Arti�cial
Technical Analyst. This is a step in addressing the relationship between

market e¢ciency and the pro�tability of technical analysis, an issue that has
appeared in some of the theoretical literature (e.g. Brown and Jennings,
1989) but is absent from many recent empirical investigations of technical

analysis.
Section 6 closes this paper with a synopsis of its conclusions. The main

�nding is that the Arti�cial Technical Analyst can provide evidence corrobo-
rating the view many Technical Analysts hold of econometric returns models

and market e¢ciency: that the former are inadequate and that the latter is

not always present.
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2 Technical analysis with full information

At a certain level of abstraction, technical analysis is the selection of rules

determining (conditional on certain events) whether a position in a �nancial

asset will be taken and whether this position should be positive or negative.

One important di¤erence between an analyst and a utility maximising in-

vestor is that the rules the analyst follows do not specify the magnitude of

the positions he should take.

This leads us to the following description of technical analysis:

Df.1: Technical Analysis is the selection of a function d which maps

the information set It at t to a space of investment decisions ­:

Ass. 1: The space of investment decisions ­ consists of three events

­ ´{Long, Neutral, Short}: It is a central feature of technical analysis that

the magnitude of these positions are undetermined and hence must be treated

as constant.

It is crucial to stress that this de�nition of technical analysis captures the

features of technical analysis as practiced. As mentioned in the introduction,

it is consistent with what is referred to as technical analysis in the literature

on empirical properties of trading rules. It is not consistent with the de�ni-

tion of technical analysis used in the literature on �nancial equilibrium with

asymmetric information where any agent who conditions on past prices is

often called a technical analyst (e.g. Brown and Jennings 1989, Treynor and

Ferguson (1985)). The reason we do not allow a more general de�nition is

because we wish to examine the properties of observed trading rules which

at �rst sight seem very di¤erent to the investment behaviour we would ex-

pect from utility maximising agents. Technical trading rules as de�ned here

have also been referred to as �market timing� rules for which an equilibrium

analysis has been developed by Merton (1981).

The event space on which these conditions are written are usually the

realisations of some random variable such as prices, volatility measures, or

the volume of trading (e.g. Blume et al. 1994) of an asset. Here, we focus

our attention on rules which are de�ned on the realisation of a history of past

prices. Restricting the information set of Technical Analysts to past prices

rather than, say, past volume is justi�ed by the fact that in order to judge

the e¤ectiveness of any rule, prices at which trade occurs must necessarily

be known. Hence, the restriction we will make allows an examination of

technical analysis when the minimum information set consistent with its

feasibility is available.
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Ass. 2: It= Pt = fPt; Pt¡1; Pt¡2; :::; Pt¡N+1g:

Where Pt refers to prices at t; henceforth, we use Et(¢) to refer to E(¢=It):

Technical Trading Rules and Rule Classes.

We now impose some structure on the form that the functions Pt ! ­

take, based on observation of how technical analysis is actually conducted. It
is the case that rules actually used di¤er over time and amongst analysts, but
are often very similar and seem to belong to certain �families� of closely re-
lated rules, such as the �moving average� or �range-break� family (see Brock
et al.). These families belong to even larger families, such as those of �trend-
following� or �contrarian� rules (see for example Lakonishok et al. 1993).
Whilst it is di¢cult to argue that use of any particular rule is widespread,
certain �families� are certainly very widely used. When we choose to analyze
the observed behaviour of technical analysts, we will therefore need to utilise
the concept of a rule family, because empirical observation of a commonly
used type of function occurs at the level of the family rather than that of the
individual rule. We formalise the distinction between a rule and a family by
de�ning and distinguishing technical trading rules and technical trading rule
classes.

Df. 2: A Technical Trading Rule Class is a single valued function
D : Pt £ x! ­ where x is a parameter vector in a parameter space B

(x 2 B µ Rk;Pt 2 R
N

+
).

Df. 3: A Technical Trading Rule is a single valued function:

dt = D(Pt;x =x) : P
t
! ­

which determines a unique investment position for each history of prices1.

2.1 Technical Analysis and rationality

Having de�ned the main concepts required to describe technical analysis,
we now attempt to identify investors who would choose to undertake this
activity. In particular, we �nd restrictions on rational (i.e. expected utility
maximising) agents� preferences that guarantee they behave as if they were

1Notice that any set of rule classes fDig
n

i=1
can be seen as a meta-class itself, where the

parameter vector x0
= fi;xg determines a speci�c technical trading rule. Loosely speaking,

a rule class can be thought of as an analogue to a parametric model in econometrics and

a meta-class as a semi-parametric model.
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Technical Analysts. The purpose of this exercise is to clarify the meaning of

�optimal technical analysis� in a full information setting. This concept can

then be applied to the more interesting case where optimal behaviour must

be learned from experience.

For this purpose, consider the following simple but classic investment

problem. An investor i has an investment opportunity set consisting of two

assets: A risky asset paying interest Rt+1 (random at t) and a riskless asset

(cash) which pays no interest. He owns wealth Wt and his objective is to

maximise expected utility of wealth at the end of the next period by choosing

the proportion of wealth µ invested in the risky asset. We will assume µ 2

[¡s; l], (s; l 2 R+) so that borrowing and short-selling are allowed but only to

a �nite extent determined as a multiple of current wealth. His expectations

Et are formed on the basis of past prices Pt, as dictated by A2:

Formally, the problem solved is:

max
µ2[¡s;l]

EtU
i(Wt+1)

s:t: Wt+1 = µWt(1 +Rt+1) + (1¡ µ)Wt

or equivalently,

max
µ2[¡s;l]

EtU
i(Wt(1 + µRt+1)) (1)

the solution to which is obtained at:

µ¤ = arg max
µ2[¡s;l]

EtU
i(Wt(1 + µRt+1)) (2)

and is the solution of the �rst order condition:

EtfRt+1U
0(Wt(1 + µRt+1))g = 0

In general therefore, µ¤ : Pt ! [¡s; l] is a function that depends on the

joint distribution of the random variables Rt+1 and U 0(Wt(1+ µRt+1)) condi-

tional on Pt and hence indirectly also on Wt: Rational investment behaviour

thus generally di¤ers from technical analysis in that investment behaviour

cannot be described by a function consistent with our de�nition of a trading

rule which speci�es that µ¤ may only take three distinct values and cannot

be a function of Wt.

In the special case that investors are risk-neutral however, the �rst order

condition above is inapplicable and instead µ¤ takes bang-bang solutions
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depending on sign(EtfRt+1g): Denoting µ¤
rn

the solution to the risk-neutral

investor�s problem and assuming that µ¤
rn

= 0 when EtfRt+1g = 0; then:

µ¤
rn

: Pt ! f¡ s;0; lg

which is compatible with the de�nition of a technical trading rule.

We have therefore shown that only a risk-neutral investor conditioning

on past prices will choose technical trading rules. This result is summarised

in the following proposition:

Proposition I: The risk-neutral investor solving (1) is an ex-

pected utility maximising agent who always uses technical trading

rules.

A direct corollary of this proposition is that expected utility maximisation

and technical analysis are compatible. This allows us to de�ne a technical

analyst as an expected utility maximising investor:

Df. 4. A Technical Analyst, is a risk-neutral investor who solves:

max
d2D

d(Pt) ¢ Et(Rt+1) (3)

where D is the space of all functions with domain R
dim(Pt)

+
and image

f¡s;0; lg.
We will let Rd

t+1
´ d(Pt) ¢Rt+1 denote the returns accruing to an analyst

who uses a rule d: Clearly, di¤erent trading rules lead to di¤erent expected

returns.

3 Arti�cial Technical Analysts

Having speci�ed what is meant by optimal technical analysis in the case of

full information, let us assume henceforth that the technical analyst does not

know Et(Rt+1) but has a history of observations of Pt on the basis of which he

must decide his optimal action at t. This is a similar amount of information

to that possessed by econometricians and hence a technical analyst with

an e¤ective mode of learning his optimal actions in this environment is an

arti�cial intelligent agent in the sense of Sargent (1993) or Marimon et al.

(1990). The term �e¤ective� is not well de�ned in these circumstances due to

the lack of an accepted model for how learning should be conducted. Models

for learning can be justi�ed as �reasonable� in a context-dependent way (i.e.

depending on the interaction of available information and the decision in
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which it will be used) but necessarily retain some ad hockery. In this section,

we will propose a �reasonable� model for how a Technical Analyst might try

and learn his optimal actions. The termArti�cial Technical Analyst will refer

to a Technical Analyst operating under conditions of imperfect knowledge of

his probabilistic environment but equipped with an explicit �reasonable�

mechanism for learning optimal actions.

3.1 Parametrising Analysts� learning

Typically, the learning technique of an arti�cial agent is similar to that of an

econometrician: the agent attempts to learn the solution to (3) by selecting

a predictor R̂t+1 for Et(Rt+1) from some parametric model speci�cation (e.g.

GARCH-M). The predictor selection is made according to some statistical

�tness criterion, such as least squares or quasi-maximum likelihood: The

arti�cial adaptive agent then chooses the optimal action d
¤ which solves (3)

where Et(Rt+1) is replaced by R̂t+1:

Whilst for some applications this may be a useful approach, we are forced

to depart from this methodology somewhat due to the fact that there is

signi�cant empirical evidence that statistical �tness criteria can be misleading

when applied to decision problems such as that of the Technical Analyst. For

example, Kandel and Stambaugh (1996) show that statistical �tness criteria

are not necessarily good guides for whether a regression model is useful to

a rational (Bayesian) investor. Taylor (1994) �nds that trading based on a

channel trading rule outperforms a trading rule based on ARIMA forecasts

chosen to minimise in-sample least squares because the former is able to

predict sign changes more e¤ectively than the latter2. More generally, Leitch

and Tanner (1991) show that standard measures of predictor performance

are bad guides for the ability of a predictor to discern sign changes of the

underlying variable3.

2In some circumstances, the technical analyst is interested in the sign of Rt+1 more
than in its magnitude. In particular, the magnitude of Rt+1 is irrelevant for his decision
problem if sign(Rt+1) is known or if sign(Rt+1) and jRt+1j are independent. Hence, a
prediction which is formulated to take into account the purpose for which it will be used
is likely to be accurate in terms of a sign-based metric. Satchell and Timmerman (1995)
show that, without severe restrictions on the underlying series, least square metrics are
not directly related to sign-based metrics.

3A number of studies of technical trading implicitly or explicitly assume away the possi-
bility that there exists a non-monotonic relationship between the accuracy of a prediction
in terms of a metric based on least squares and a metric based on the pro�t maximisation.
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These empirical considerations suggest that any reasonable model of an-

alysts� learning must take his loss function into account. One way to achieve

this would be to create Bayesian Arti�cial Technical Analysts but this would

require speci�cation of priors on F (Rt+1=Pt), which might be very di¢cult.

Instead, we con�ne the Arti�cial Technical Analyst to a frequentist perspec-

tive and calculate an estimator d̂¤ giving in-sample optimal solutions to (3)

from a speci�ed function space D; this is then used as an estimate for d¤.

This type of inference is commonly employed in decision theoretic applica-

tions where learning is not focused on determining the underlying stochastic

environment, but in determining an action which is an optimal decision for

an agent with very little knowledge of this environment.

The main ingredients for creating an Arti�cial Technical Analyst who

learns according to the decision theoretic approach are an in-sample analogue

to (3) and an appropriate way of restricting the functional space D. The

simplest in-sample analogue to (3) is:

max
x2B

§t¡1

i=t¡m
D(Pi;x) ¢Ri+1 (4)

The motivation for this is that if 1

m
§t¡1

i=t¡m
D(P

i
;x)R

i+1
converges uni-

formly4 to E fD(P
t
;x) ¢R

t+1
g as m ! 1; it is also the case that the ar-

gument maximising the former expression converges to the maximiser of the

latter. In other words, we are after a consistent estimator of the solution to

(3).

Next we choose D so as to impose some restrictions on the solution to

(4) that allow regularities of the in-sample period to be captured. Having

no theory to guide us on how to make this choice we will use empirically

observed rule classes De in the hope that the reason Technical Analysts use

them is because they are useful in solving problems similar to (3). Ideally,

we would like to have a �speci�cation test� to check whetherDe contains the

optimal solution to (3) but it is doubtful if a process for achieving this exists.

Examples are Taylor (1989a,b,c), Allen and Taylor (1989), Curcio and Goodhart (1991)

and Arthur et al. (1996) , who reward agents in an arti�cial stockmarket according to

traditional measures of predictive accuracy. When the assumption is made explicit its

signi�cance is usually relegated to a footnote, as in Allen and Taylor (1989), p.58 fn.,

�our analysis has been conducted entirely in terms of the accuracy of chartist forecasts

and not in terms of their pro�tability or �economic value� although one would expect a

close correlation between the two�. As we have argued however, the preceding statement

is unfounded and such studies must be treated with caution.
4Conditions for this are provided in Skouras (1998).
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These considerations lead us to de�ne an Arti�cial Technical Analyst as

follows:

Df. 6: An Arti�cial Technical Analyst is an agent who solves:

max
x2B

§t¡1
i=t¡mD

e(Pi;x)Ri+1 (5)

where De is some empirically observed D.

Turn now to an example illustrating the mechanics of this agent that will

be useful in subsequent sections.

3.1.1 Example: An Arti�cial Technical Analyst Learns the Opti-

mal Moving Average Rule

The moving average rule class is one of the most popular rule classes used

by technical analysts and has appeared in most studies of technical analysis

published in economics journals. For these reasons, we will use it to illus-

trate how an Arti�cial Technical Analyst might operate by using it as a

speci�cation for De. Let us begin with a de�nition5 of this class:

Df. 7: The Moving Average rule class MA(P
t
;xt) is a trading

rule class s.t. :

MA(Pt;x) =

2
64

¡s if Pt < (1¡ ¸)
§n

i=0
Pt¡i

n+1

0 if (1¡ ¸)
§n

i=0
Pt¡i

n+1
· Pt · (1 + ¸)

§n

i=0
Pt¡i

n+1

l if Pt > (1 + ¸)
§n

i=0
Pt¡i

n+1

3
75 (6)

where Pt = [Pt; Pt¡1; :::; Pt¡N ];

x = fn; ¸g;

X = fN;¤g ;

N = f1; 2; :::Ng; this is the �memory� of the MA

¤ = f¸ : ¸ ¸ 0g this is the ��lter� of the MA

Now if De = MA(Pt;x), (5) becomes:

max
n;¸

§t¡1
i=t¡mMA(Pi; n; ¸)Ri+1 (7)

5As de�ned, the moving average class is a slightly restricted version of what Brock et

al. (1991, 1992) refer to as the �variable length moving average class� (in particular, the

restriction arises from the fact that the short moving average is restricted to have length

1).
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Let us �x ideas with an example. Suppose an Arti�cial Technical Analyst

solving (7) wanted to invest in the Dow Jones Industrial Average and had m

daily observations of MA(Pi; n; ¸)Ri+1 derived from N +m+1 observations
of Pt. Let N = 200 and m = 250: Suppose also that s = l = 1 (i.e. position

size cannot exceed current wealth). What do the solutions to (7) look like?

Figure I plots the answer to this question6 with observations from t=1/6/1962

till 31/12/19867 (i.e. 6157 repetitions).

Insert Figure 1 Here

Figure 1 is a plot of a sequence of rule parameters
n
(bn¤

t
; b̧¤

t
)
o
6157

t=1

which

are optimal in a recursive sample of 250 periods. It is di¢cult to interpret

the sharp discontinuities observed in this sequence but they suggest there is

additional structure in the series that a more intelligent Arti�cial Technical

Analyst (one with a more sophisticated learning mechanism) might be able

to identify. From the sequence of solutions
n
(bn¤

t
; b̧¤

t
)
o
6157

t=1

optimal rules bd¤
t
=

MA(Pt;bn¤t ; b̧¤t ) can be directly derived. These rules are optimised in the

period before t, and yield out of sample returns8 which shall be denoted Rd
¤

t+1

and used in subsequent sections:

We now turn to applications of the Arti�cial Technical Analyst.

4 Arti�cial Technical Analysts and the dis-

tribution of returns in �nancial markets.

Much of the literature on technical trading rules has asked whether popular

types of rules such as the moving average class will yield returns in excess of

what would be expected under some null hypothesis on the distribution of

6
¤ was discretised to ¤ =f0; 0:005; 0:01;0:015;0:02g : This discretisation allowed us

to solve (7) by trying all dim(N) ¢ dim(¤) = 1000 points composing the solution space
in each of the 6157 recursions. More sophisticated search methods could lead to more
intelligent Arti�cial Technical Analysts but such niceties do not seem necessary when De

is as narrow as it is in this example. Furthermore it makes conditions under which (7)
converges uniformly much weaker (see Skouras (1998)).

7This data corresponds to the third subperiod used by Brock et al. and to most of the
data used by Gencay (1996).

8It may be interesting to note that these rules correspond to what Arthur (1992) terms
�temporarily ful�lled expectations� of optimal rules.
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returns (e.g. Brock et al., Levich and Thomas (1993), Neftci (1991), etc.).

For example, under a null that returns are a random walk, trading rules can

do no better than the market mean; if this is contradicted by the data it is

evidence that the null can be rejected. A serious criticism levied against this

practice arises from the fact that it involves a testing methodology which is

not closed. The openness derives from the ad hoc choice of rules the returns

of which are examined, since these are selected according to non-rigorous

and often implicit criteria. We therefore propose restricting our choice of

rules to those chosen by Arti�cial Technical Analysts; in this way we can

overcome the problem of arbitrariness and close the methodology for testing

hypotheses on return distributions of rule classes9.

Arti�cial Technical Analysts should allow us to avoid a grave lacuna in-

volved in the open ad hoc approach. This is that �anomalous� results may be

coincidental. In Section 4.1, we show that analysis based on a small sample

of ad hoc rules is subject to the possibility of leading to spurious conclusions
since the distribution of mean returns across rules in a class is very diverse
and hence small samples of rules are unrepresentative10.

Furthermore, we show in section 4.2 that by using the more sophisticated
rules of the Arti�cial Technical Analyst we can construct more powerful tests

of the null hypotheses.

4.1 The variation of returns across rules

In this section we show that small samples of rules are insu¢cient to gen-

erate reliable conclusions about the behaviour of rule returns even within
a relatively narrow class. It would be interesting to try and derive returns
processes under which this is the case, but this has not yet been achieved.

We must therefore rely on empirical evidence to see whether rule returns are

correlated closely enough within a class to justify using a few rules as proxies

9Of course, a degree of arbitrariness remains in our selection of the rule class to be

tested. However, we have already mentioned that there exists much stronger empirical

evidence on the basis of which to choose a rule class than for any speci�c rule. The arbi-

trariness involved in the speci�cation of learning schemes may be an additional problem,

but overall such choices are generally considered to be robust and are certainly more robust

than choices of arbitrary rules.
10The likelihood of such coincidences appearing in the literature is augmented by the fact

that published research is biased in favour of reporting �anomalies� over �regularities�.
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for the behaviour of the class as a whole11.

Figure 2 shows the returns accruing to each rule belonging to the moving

average class if it were applied to the data used in Section 3.1.1.

Insert Figure 2 here

Figure 2 illustrates the inadeqaucies of the ad hoc approach whereby

speci�c rules are used as proxies for the distribution of expected returns of a

whole class. Notice in particular two highly prominent facts evident in this

�gure.

Firstly, the highest mean return from a rule in this class is 1270 times

larger than that of the worst rule. Since the means are taken from samples

with more than 6000 observations, it is unlikely that sampling uncertainty

can account for these di¤erences. We must conclude that returns accruing

to rules within the same class vary very signi�cantly.

Secondly, the expected returns of rules display signi�cant variance even

within small areas of the classes� parameter space. The best rule is the

three period moving average with no �lter MA(3; 0) and the worst is the

four period moving average with a 2 percent �lter MA(4;0:02). This is

important because most researchers choose to calculate returns for a few

rules sampled evenly from the space of all rules, re�ecting the unfounded

implicit assumption that rules are �locally� representative.

Taken together these two observations imply that ad hoc rules cannot be

the basis for convincing tests of speci�cations of models for returns. Rules

must be selected according to an explicit procedure which is justi�able on

theoretical grounds. Arti�cial Technical Analysts provide such a procedure.

11That this is the case is suggested by Brock et al, who say that �Recent results in

LeBaron (1990) for foreign exchange markets suggest that the results are not sensitive to

the actual lengths of the rules used. We have replicated some of those results for the Dow

index�, p1734, fn. The �recent results� to which Brock et al. refer are a plot of a certain
statistic of 10 rules. Apart from the fact that 10 rules constitute a small sample, the
minimum statistic is almost half the size of the maximum statistic - so it is not entirely
clear that these results support the claim made. These results can be found in LeBaron
(1998).
On the other hand, the conclusions Brock et al. draw are valid (if only by coincidence)

since the rules they chose generated slightly sub-average returns.
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4.2 Arti�cial Technical Analysts� rules generate above

average returns

We have illustrated the fact that the use of a small sample of rules from a

class is an unreliable way of deriving conclusions regarding the behaviour of

rule returns for the whole class. We cannot know on any a priori grounds

how large this sample must be in order for the mean returns across sampled

rules to be representative of mean returns across the class. However, we now

show that �representative� mean returns are in any case likely to be less

than those obtained by an Arti�cial Technical Analyst and hence will be less

e¤ective in rejecting hypotheses on returns distributions.

Intuitively speaking, the reason for this is that a technical analyst who at t

chooses d¤ fromD
e, should have learned to make a better-than-average choice

of d. Imposing the use of a �representative� rule by an Arti�cial Technical

Analyst would be the analogue in a decision theoretic setting of estimating

a parametric model for a time series by choosing the parameters which have

average rather than minimum least squared errors. We therefore conclude

that �representative� choices of rules cannot be expected to be as good as

the rules chosen by an agent who bases his decision on past experience.

The following table serves to empirically con�rm this reasoning. Utilising

some of the information in Brock et al.
12 (1991, Table V) it shows that the

results reported there on the basis of various �xed rules d are much weaker

than those which can be drawn by using the time-varying optimal rule d
¤

t

derived in Section 3.1.1. That the rules chosen by Brock et al. are �average�

across the space of all rules can be veri�ed by inspection of their position in

Figure 2.

Rule N (buy) N(sell) Buy Se ll Buy>0 Se ll>0 buy-se ll

Long 8t 6157 0 0.00023 - - - -

Brock et al
(nt; ¸t)
(50,0) 3468 2636 0.00036 -0 .0004 0.5167 0.4879 0.00041

(0.90076) (-1.16108) (1.78607)
(50 ,0.01) 2782 1985 0.00053 0.00003 0.5230 0.4861 0.00049

(1.64014) (-0.70959) (1.89872)
(150 ,0) 3581 2424 0.00037 -0.00012 0.5205 0.4777 0.00049

(0.94029) (-1.49333) (2.11283)
(150,0.01) 3292 2147 0.00035 -0.00018 0.5216 0.4742 0.00052

(0.80174) (-1.67583) (2.13824)
(200 ,0) 3704 2251 0.00037 -0.00016 0.5173 0.4780 0.00053

(0.92753) (-1.64056) (2.23379)
(200,0.01) 3469 2049 0.00038 -0.00018 0.5189 0.4763 0.00056

(0.96907) (-1.66579) (2.26328)
Average 0.00037 -0.00011 0.00048

Opt. TTR , 3313 2650 0.00095 -0.00067 0.5337 0.4675 0.00162©
d(n¤

t
; ¸¤

t
)
ª
6157

t=1
(3.95033) (-4.57949) (7.34848)

12Note that Brock et al. (1992) reproduce only a part of this table
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Table I: The first row of this table indicates which rule is being used: T he rules in

parentheses represent members of the moving average class; as they constitute

specifications of pairs of (n
t
; ¸

t
): The second and third rows indicate the number

of buy and sell signals generated: The fourth and fifth indicate the mean return

on days on which buy and sell signals have occured: The next two columns report

the proportion of days in which buy or sell signals were observed in which returns

were greater than zero: F inally; the last column reports the difference between

buy and sell signals: T he numbers in parentheses report results of t¡ tests testing

whether the numbers above them are different to zero: F or the exact tests; see Brock

et al: (1992):

The table indicates that all t-ratios are much higher for the optimal rule

we have developed. This means we can reject the null hypothesis that the

returns of the DJIA are normally, identically and independently distributed13

with much greater con�dence than that o¤ered by Brock et al.�s analysis. We

expect that the optimal rule will be equally powerful as a speci�cation test for

other hypothesised distributions including those considered by Brock et al.

(AR, GARCH-M, EGARCH). However, we must leave con�rmation of this
for future research.

It is on the basis of this evidence that we propose the use of Arti�cial
Technical Analysts� rules for model speci�cation tests. This decreases the
probability of obtaining misleading results whilst at the same time delivering

more powerful conclusions.

5 Market e¢ciency and technical trading

We often read that �If markets are e¢cient, then (technical) analysis of past
price patterns to predict the future will be useless�, (Malkiel, 1992). In
this section, we attempt to analyse the relationship between the e¢ciency
of markets and the e¢cacy of technical analysis, with a view to a formal

assessment of this statement.

At present there seems to be little consensus as to what empirical prop-

erties an e¢cient market should display (see LeRoy 1989 and Fama 1991)
consequently to the lack of an accepted equilibrium model for �nancial mar-
kets. In the context of a speci�c equilibrium model, successive re�nements

on the de�nition of Fama (1970) have led to Latham�s (1989) de�nition ac-

cording to which a market is E-e¢cient with respect to an information set

13The table also contains information which is su¢cient to show that the Cumby-Modest

(1987) test for market timing would, if the riskless interest rate were zero, con�rm the

ability of a technical analyst learning optimal rules to conduct market timing.
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It i¤ revelation of It to all market participants would leave both prices and
investment decisions unchanged.

We will now propose a de�nition of e¢ciency which has the advantage
that its testability does not hinge on the assumption of a speci�c equilibrium
model. Our de�nition is a necessary condition for a market to be E-e¢cient.
It is consistent with the weak requirement implicit in almost all de�nitions
that pro�table intertemporal arbitrage should not be possible on the basis
of some information set14 (Ross, 1987). In its very weakest forms, this is
interpreted as meaning that once transaction costs are included, no risk-
averse agent can increase his utility by attempting to �time� the market. This
statement is so weak that some authors (for example LeRoy (1989, p.1613
fn.)) consider this notion of market e¢ciency to be non-testable. However we
shall show below that under certain assumptions this test can be empirically
implemented. For simplicity, the analysis is restricted to the case where past
prices are the information set with respect to which we evaluate e¢ciency
(weak-form).

We will refer to the version of the e¢cient market hypothesis that we
have alluded to as the Lack of Intertemporal Arbitrage (LIA) Hypothesis
and discuss its implications for technical trading rules. It will become evident
that this e¢ciency notion is formulated so that it is consistent with the idea
that if technical analysis �works�, then markets must be ine¢cient. In this
sense it formalises the e¢ciency notion to which many empirical analyses of
trading rule returns allude, yet typically leave unde�ned (e.g. Hudson et al.

1996, Taylor 1992).
LIA is a sensible equilibrium notion if it is reasonable to assume that

there exist some agents in the market who are involved in solving (1), which
we repeat here for convenience:

max
µ2[¡s;l]

EtU
i(Wt(1 + µRt+1)) (1)

We will say that LIA is con�rmed if knowledge of past prices does not
a¤ect the optimal actions of any agent i solving (1). A desired property
e¢ciency notions have failed to deliver is a way of quantifying near-e¢ciency.
We will see that LIA allows precisely such a quanti�cation.

14An exception is Olsen et al. 1992, who propose a de�nition according to which �e¢cient

markets... are a requirement for relativistic e¤ects and thus for developing successful

forecasting and trading models�.
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Df. 5.1. The Lack of Intertemporal Arbitrage (LIA) Hypothesis

holds in a market in which there exist agents who solve (1) and have

utility functions U in a set U if for all U 2 U

µ¤i (Pt;Wt) = µ
¤

(Wt) 8 Pt

where

µ¤ (Pt;Wt) ´ arg max
µ2[¡s;l]

EU(Wt(1 + µRt+1)jPt) (8)

µ
¤

(Wt) ´ arg max
µ2[¡s;l]

EUWt(1 + µRt+1)) (9)

What this de�nition implies is that if LIA holds, the true joint density fRt+1;Pt

is such that knowledge that Pt = P in no way a¤ects the investment behav-

iour of any market participant for all P; this is not a su¢cient condition

for fRt+1
= fRt+1

jPt+1, i.e. independence of Rt+1 and Pt (or in the termi-

nology of Clements and Hendry (1996) that Rt+1 is not predictable by Pt).

For example, suppose Pt is only useful for predicting third and higher order

moments of the distribution. Then in a market with mean-variance agents,

actions will not be a¤ected by knowledge of Pt although in a market pop-

ulated with other types of agents this may be the case. Hence, according

to our de�nition, a market is e¢cient with respect to a class of agents and

the e¢ciency of a market can be viewed as a function of the size of this

class. Formally, the degree of e¢ciency is determined by the size of the space

U
E´

n
U : µ¤ = µ

¤

8 Pt

o
.

We may interpret the size of UE as a measure of near-e¢ciency with

respect to Pt: as the �size� of the set UE increases, less agents �nd Pt useful

and hence the market becomes more e¢cient with respect to Pt: We must be

careful in de�ning what we mean by increases in this setting. Here we will

simply say that UB is larger thanUA ifUA ½ UB in which case the proposed

measure would imply the reasonable conclusion that market A is less e¢cient

than B. Such comparisons are relevant if there exist two markets which may

be treated as seperate on a priori grounds or if we wish to compare the

e¢ciency of a single market during di¤erent time periods.

To decide whether a market is e¢cient with respect to a given U we may

derive µ¤ and µ
¤

for that U and evaluate the following hypothesies:

H0(LIA) : µ¤ (Pt;Wt) = µ
¤

(Wt) 8 Pt (10)

versus

H1(Not LIA) : µ¤i (Pt;Wt) 6= µ
¤

(Wt) some Pt (11)
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5.1 Technical Trading Rules and LIA

5.1.1 The Arti�cial Technical Analyst provides a condition on rule

returns for testing LIA

It is one of the most important features of LIA that it can be directly tested

without any assumptions on how prices are formed. To see this, notice that

if the distributions fRt+1
and fRt+1

jPt are known, LIA can be directly evalu-

ated, in some cases even analytically. If the distributions are unknown, one

approach for empirically testing (10-11) would be to use an estimated model

for the unknown distributions fRt+1
and fRt+1

jPt. However, such a model

may not be feasible because in practice it may be di¢cult to forecast Rt+1

even when it is known to be predictable (for the distinction between pre-

dictability and forecastability, see e.g. Clements and Hendry, 1996). Here we

propose an alternative testing approach based on the returns obtained by an

Arti�cial Technical Analyst. This approach is based on the fact that a suf-

�cient condition for LIA to be violated is that technical trading is preferred

over always being long by some investors. We show this formally below:

Proposition II. Suppose an investor maximises (unconditional)

expected utility by investing a fraction of wealth µ
¤

in a risky as-
set (see(9)), but can increase his expected utility by investing µ

¤

according to a trading rule d(Pt) (i.e. EU i(Wt(1 + µ
¤

d(Pt)Rt+1)) >
EU i(Wt(1 + µ

¤

Rt+1)) ). Then LIA does not hold15, i.e. µ¤
i
(Pt;Wt) 6=

µ
¤

(Wt) for some Pt.
Proof

The assumption, may be rewritten as:

EfE[U i(Wt(1 + µ
¤

d(Pt)Rt+1))jPt]g > EfE[U i(Wt(1 + µ
¤

Rt+1))jPt]g

Which implies that 9 a set Q µ Rk

+
s.t. Pr(Pt 2 Q) > 0 and 8 Pt 2 Q

E[U i(Wt(1 + µ
¤

d(Pt)Rt+1))jPt] > E[U i(Wt(1 + µ
¤

Rt+1))jPt]

Now de�ne:

µ¤¤ =

½
µ
¤

d(Pt) if Pt 2 Q
µ¤ otherwise

¾

15Note that expectations are taken with respect to fRt+1;Pt
so that d(Pt) is a random

variable unless it is made explicit that the expectation is conditional on Pt.
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Then clearly, 9 µ¤¤ 6= µ
¤

s:t:E[U i(Wt(1 + µ¤¤Rt+1))jPt] ¸ E[U i(Wt(1 + µ
¤

Rt+1))jPt]8Pt

and the inequality is strict if Pt 2 Q which directly implies (11).

qed¥

We conclude that a test for LIA based on trading rules, can be obtained by

replacing (10-11) with the stronger but (in some cases) empirically veri�able

conditions:

H
0
0 : EU i(Wt(1 + µ

¤

Rd

t+1
)) · EU i(Wt(1 + µ

¤

Rt+1)) 8d (12)

H
1
0 : 9 d s.t. EU i(Wt(1 + µ

¤

Rd

t+1
)) > EU i(Wt(1 + µ

¤

Rt+1)) (13)

Whilst rejection of H0
0 is not a necessary but only a su¢cient condition

for rejection of H0; we now show that it turns out that even H0
0 can be

empirically rejected for some important utility function classes.

5.1.2 The Risk-Neutral Case

In this case, all U 2 U are linear and the test (12-13) becomes (assuming µ
¤

is positive, i.e. E(Rt+1) > 0):

Hrn

0
0 : E(Rd

t+1
) · E(Rt+1) 8 d (14)

Hrn

1
0 : 9 d s:t: E(Rd

t+1
) > E(Rt+1) (15)

Suppose we use the rules fd(n¤
t
; ¸¤

t
)g

6157

t=1
of the Arti�cial Technical Analyst

as derived in Section 3.1.1 and the corresponding returns Rd
¤

t+1
to test Hrn

0
0 :

Then referring to the table below, we conclude that the probability that H0

(LIA) is accepted is extremely low.

Rules Mean Return St. Dev. Pr(Rd
¤

t+1
· Rt+1)

Rt+1 0.0002334 0.008459 -

R
d
¤

t+1
0.000801 0.008335 8.887e-5

Table II Note that the last column was calculated conditional

on the (false) assumption that Rt+1and R
d
¤

t+1
are normal i.i.d.

Hence we can conclude with great con�dence that there exist intertempo-

ral arbitrage opportunities (LIA is rejected) for risk-neutral agents investing

in the market for the DJIA index.
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5.1.3 The Quadratic Case

Suppose now that U includes quadratic funcions. Is it still the case that LIA

is violated? The reason this may not be the case is that although there exists

a rule satisfying (15) it involves greater variance than Rt+1 and hence is not

preferred agents with quadratic utility. For example, LeRoy (1989) argues

that:

...even though the existence of serial dependence in conditional expected re-

turns implies that di¤erent formulas for trading bonds and stock will generate dif-

ferent expected returns, because of risk, these alternative trading rules are utility-

decreasing relative to the optimal buy-and-hold strategies.

In order to take account of this possibility when testing for LIA, we

formulate the quadratic version of (12-13) which assumes that

U
MV =

½
U : U (W ) = aW 2 + bW + c; a · 0;

¡b

2a
¸ W

¾

so for all U 2 UMV it is the case that EU(x) is increasing w.r.t. E(x), and

decreasing w.r.t V ar(x):

The following proposition shows the somewhat surprising result that if

there exists a rule that mean-dominates a long position, then it will also

variance dominate it and hence LeRoy�s statement is a logical impossibil-

ity in rather general circumstances. The proposition is also interesting in

its own right, it is crucial for our purposes because it establishes general

circumstances in which the quadratic case collapses to the risk-neutral case.

Proposition III: If the trading rule d1 (Pt) mean dominates trad-

ing rule d2 (Pt) and both lead to positive expected returns

E(d1Rt+1) > E(d2Rt+1) ¸ 0

and (a): The second rule is always long, i.e. is the �Buy and Hold�

strategy and long positions are not smaller than short positions

d2 (Pt) = l all Pt

l ¸ s

or (b): Trading rules have a binary structure and position sizes are

symmetric

d1;d2 2 f¡s; lg

l = s
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Then the returns from rule 1 have a smaller variance than the

returns from rule 2

V (d1Rt+1) < V (d2Rt+1)

Proof:

Part (a)

Let d1 ´
1

l
d1

Then the assumption implies E(d1Rt+1) > E(lRt+1) ¸ 0

E(d1Rt+1) > E(Rt+1) ¸ 0

Notice that di =
©
¡ s

l
; 0; 1

ª
and by assumption l ¸ s hence 0 > ¡ s

l
¸ ¡1 so

¡
di

¢2
· 1:

Hence (diRt+1)2 · (Rt+1)
2

Using the fact that V (x) = E (x2) ¡E (x)2 it follows that:

V
¡
d1Rt+1

¢
< V (Rt+1)

From which it also follows directly that

V (d1Rt+1) < V (Rt+1)

Part (b)

Let di ´
¡
1

l

¢
di; i = 1; 2

Then the assumption E(d1Rt+1) > E(d2Rt+1) ¸ 0 implies

E(d1Rt+1) > E(d2Rt+1) ¸ 0

Notice that di = f¡1; 1g so
¡
di

¢2
= 1:

Hence (diRt+1)2 = (Rt+1)
2
; i = 1; 2

Using the fact that V (x) = E (x2) ¡E (x)2 it follows that:

V
¡
d1Rt+1

¢
< V

¡
d2Rt+1

¢

Hence also:

V (d1Rt+1) < V (d2Rt+1)

qed¥

This Proposition is useful for establishing the two following corollaries,

but also because it provides a shortcut to ranking rules by performance in
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terms of Sharpe Ratios - an exercise attempted by many researchers and
practitioners as an alternative to ranking by mean returns (e.g. LeBaron
1998b, Sullivan, Timmerman and White 1997). In the circumstances indi-
cated however, Sharpe Ratios are inversely related to mean returns and such
exercises are often redundant16.

Corollary III.1: Hrn

1
0 is a su¢cient condition for the rejection of

LIA (i.e. (13) ) (15)) when E(Rt+1) ¸ 0; if U i is a mean-variance

utility function and l ¸ s.

Proof

This follows from Proposition IIIa. To show it, notice that ex hypothesi:

E(Rd

t+1
) > E(Rt+1) ¸ 0

So by Proposition IIIa:

V (Rd

t+1
) < V (Rt+1)

These two inequalities imply also that:

E(Wt(1 + µ¤Rd

t+1
)) > E(Wt(1 + µ¤Rt+1))

V ar(Wt(1 + µ¤Rd

t+1
)) < V ar(Wt(1 + µ¤Rt+1))

which implies that for all U 2 UMV :

U(Wt(1 + µ¤Rd

t+1
)) > U(Wt(1 + µ¤Rt+1))¥

Hence it follows that as long as l ¸ s which is very plausible, the risk-
neutral case implies the mean-variance case and therefore mean-variance in-
vestors in the DJIA would �nd knowledge of past prices useful. Indeed, note
that Proposition IIIa is empirically con�rmed in Table II.

16Special cases of this proposition have been previously established by Skouras (1997,

1996) for l = s = 1. This narrow circumstance seems to have been independently examined

by Acar (1998) who shows that if rules are binary, the variance of a rule is inversely related

to its mean (as in Part b). However, his proof is erroneous because as we have shown this

holds only when E (Rt) > 0 (which he does not assume).
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5.1.4 The Risk-Averse Case

In this case U is a concave class of functions and H0 is a great deal more

complicated to test. As is usually the case, an exception arises when Rt+1

and Rd
t+1 are normally distributed.

Proposition IV: If Rt+1 and Rd
t+1 are normally distributed, l ¸ s

and E(Rd
t+1) > E(Rt+1) ¸ 0, then Rd

t+1 stochastically dominates Rt+1

(and hence all risk-averse agents will prefer Rd
t+1):

Proof:

In normal environments mean-variance domination and stochastic domi-

nation are equivalent (Hanoch and Levy, 1969). This together with Proposi-

tion IIIa yield the desired conclusion.¥

If the assumptions of Proposition IV are not known to be satis�ed, we

can reformulate (12-13) in terms of a stochastic domination criterion of Rd
t+1

over Rt+1. This is shown in Proposition V below:

Proposition V: A su¢cient condition for (13) is that E(Rt+1) ¸ 0;
l ¸ s and 9 d s:t M (°) ¸ 0 8 ° and M (°) > 0 for at least one °; where

M (°) ´

Z °

¡1

[fRt+1
(x)¡ fRd

t+1
(x)]dx

and fRt+1
; fRd

t+1
are the marginal densities of Rt+1and Rd

t+1 respec-

tively.

Proof

As is well known, the assumption on M (°) is a su¢cient condition for:

EU(Rd
t+1) > EU(Rt+1) 8 concave U

Notice now that when E(Rt+1) ¸ 0 then µ
¤

(Wt) ¸ 0 (see (9)) and so

U(Wt(1 + µ
¤

x)) is also concave in x; since:

@

@x
U (Wt(1 + µ

¤

x)) = Wtµ
¤

U
0

¸ 0

@2

@x2
U (Wt(1 + µ

¤

x)) = (Wtµ
¤

)2U 00 < 0

Therefore it must also be that

EU (Wt(1 + µ
¤

Rd
t+1)) > EU (Wt(1 + µ

¤

Rt+1))
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qed¥

From this proposition we notice that (12-13) can be replaced with:

Hra

0
0 :6 9 d s.t.

Z °

¡1

[fRt+1
(x)¡ fRd

t+1
(x)]dx > 0 8 ° (16)

Hra

1
0 : 9 d s:t:

Z °

¡1

[fRt+1
(x)¡ fRd

t+1
(x)]dx > 0 8 ° (17)

and the inequality is strict for some °

Whilst a formal statistical test of (16-18) is feasible, it is incredibly cum-

bersome computationally (see Tolley and Pope, 1988) especially when there

are many observations on Rt+1 and Rd
t+1. This obstacle forces us to o¤er

only a casual evaluation of whether H0 can be rejected. Such an evaluation
can be conducted by inspecting a plot of the sample version of M̂(°) for the
optimal moving average returns Rd¤

t+1:

Insert Figure 3 Here

Observing Figure 3, we notice that for small °; M(°) < 0, indicating that
the minimum returns from the Arti�cial Technical Analysts� rule resulted in

smaller returns than the minimum market return. This implies that an agent
with a utility function which greatly penalizes extremely low returns would
prefer not to use the trading rule. Hence, even without taking account
of sample uncertainty we are unable to reject LIA in the risk-averse case.
Taking sample uncertainty into account using a formal statistical procedure

cannot reverse this result, since it could only make rejection of the null more

di¢cult. We conclude that there are risk-averse agents whose action cannot
be proved to depend on knowledge of past prices using this data and the type
of procedure we propose. Clearly however there may be more powerful tests

that could lead to a di¤erent result.

5.2 E¢ciency with Transaction Costs

So far we have shown that without transaction costs, there existed an arbi-

trage opportunity for investors in the DJIA index who had mean-variance
utility. We now consider how the inclusion of transaction costs a¤ects these

results. First of all, transaction costs will alter Arti�cial Technical Analysts�
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objective function. To take account of this, we let s = l = 1 as before and
replace (7) with:

(n̂t(qt¡1); ^̧t(qt¡1)) (18)

= arg max
n2N;¸2¤

f§t¡1
i=t¡mMA(Pi; n; ¸)Rt+1 ¡ c jMA(Pi; n; ¸)¡ qt¡1jg

where c are proportional transaction costs and qt¡1 is the position at t¡1, i.e.

qt¡1 2 f¡1; 0;1g. Beginning with q0 = 0, we set q1 = MA

³
Pt; n̂t (q0) ; ^̧t (q0)

´

and iterate so as to obtain the sequence fqtg : From this, we next obtain³
n̂¤t ;

^̧¤
t

´
= (n̂t(qt¡1); ^̧t(qt¡1)) with which we derive

n
MA(Pt; n̂

¤

t ;
^̧¤
t )
o6157
t=1

and Rd¤

t+1for various levels of c which are proportional transaction costs: Our
objective will be to determine the level of transaction costs17 c for which LIA
holds, i.e. Hrn

0
0 cannot be rejected in favour of Hrn

1
0 at the 95% con�dence

level18. This exercise is conceptually similar to that of Cooper and Kaplanis
(1994) who try to estimate the level of deadweight costs that would explain
the home bias in international equity portfolios. Allowing for transaction
costs changes our near-equilibrium notion in that we now seek pairs fUE; cg
rather than just UE for which LIA holds.

In Table III below we have, in the second column, tabulated the returns
from a rule used by the analyst who solves (18). The level of costs at which
H0 can be rejected under the assumption that Rt+1;R

d¤

t+1 » N i:i:d: is repre-
sented by the line dividing Table III. Notice that this table incorporates the

17Note that as de�ned, the cost of switching from a long to a short position and vice

versa is 2c:
18It is important to note that Proposition III can be extended to the case of transaction

costs if these are small enough. The same is not true for Proposition I if transaction costs

are proportional.
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special case c = 0 reported in Table II.

Rules Mean Return St. Dev. Pr(Rd

t
· Rt) ¦6157

t=1
(1 +R

d

t
)

Market Rt 0.0002334 0.008459 - 2.378

Opt. TTR

c=0 0.000801 0.008335 8.887e-05 110.7

c=0.0001 0.0007304 0.008328 0.0005109 71.41

c=0.0002 0.0006911 0.008321 0.001238 55.88

c=0.0003 0.0006196 0.008318 0.00533 35.63

c=0.0004 0.0005508 0.008311 0.01788 22.99

c=0.0005 0.0004893 0.008305 0.0452 15.44

c=0.0006 0.0004707 0.00829 0.058 13.67

c=0.0007 0.0003741 0.00828 0.1755 7.101

c=0.0008 0.0003099 0.008273 0.3061 4.456

c=0.0009 0.0002763 0.008205 0.3876 3.453

c=0.001 0.0002191 0.008215 0.5379 2.13

Table III: The �rst column indicates which level of costs is

under consideration. The next two columns indicate the empirical

mean and the standard deviation of the rules� returns.

The fourth column shows the probability (under the assumption

of normal distributions) that the mean returns from a speci�c rule

were smaller or equal to the mean market returns. The �nal

column shows the cumulative returns from each strategy during

the whole time period.

The table indicates that at the 5% level of signi�cance, LIA will be ac-

cepted for c ¸ 0:06%: The mean return of the optimal rule remains larger

for c · 0:09% (but not for the usual con�dence margin)19. These levels of

c make it tempting to argue that with todays� cost conditions20 LIA is vio-

lated. However, costs were certainly larger at the beginning of the sample we

have considered. How large the decrease in transaction costs has been and

how it has a¤ected di¤erent types of investors is a question which is beyond

the scope of this paper and which we do not attempt to answer. We must

19Note that Proposition IIIa can be extended to the case with transaction costs if these

are �small enough�. Table III is consistent with the results of Proposition IIIa.
20An investor with access to a discount broker, e.g. via email, can purchase 1000 shares

of a company listed on the NYSE for a $14.95 fee. However, micro-structure frictions such

as bid-ask spreads should also be taken into account.
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add the warning that the time-series used is not adjusted for dividends and

hence our results are likely to be biased against LIA.

In this section, we have derived conditions on fUE;cg that ensure that

the trading rule returns of an Arti�cial Technical Analyst are such that we

cannot reject our version of the weak form of the e¢cient market hypoth-

esis. The restrictions derived are not trivial and hence even though our

e¢ciency notion is only a special case of other standard notions and even

though we have only tested su¢cient conditions for its� rejection, we have

found a class of agents de�ned by their preferences and transaction costs who

would optimally condition actions on past prices. Note that there are nu-

merous asymmetric information models which generate equilibria for which

LIA is violated (e.g. Hussman 1992, Brown and Jennings 1989, Treynor and

Ferguson 1985) so some of the available models may describe the data gen-

erating process accurately. The methodology proposed is useful because it

unties e¢ciency from a speci�c equilibrium notion and allows near-e¢ciency
comparisons across time and markets by comparison of the generality of the
conditions on fUE;cg that would ensure LIA is not rejected. In thus provides
a quanti�able measure of near e¢ciency. Equally importantly, it formalises
a sense in which markets can be characterised as ine¢cient when empirical

studies �nd trading rules to be pro�table. It therefore captures an informal
notion of e¢ciency used by many researchers.

6 Conclusions

Empirical investigations of �nancial series have previously found technical
trading rules to be useful research tools. In this paper we develop a more
sophisticated form of technical analysis and show empirically that it can be

used to obtain powerful characterisations of �nancial series.

Our �rst step is to show that technical analysis is consistent with utility

maximisation since in a full information environment risk-neutral investors
will use technical trading rules. This formalisation is revealing because it
clearly illustrates that the optimality of a trading rule can only be judged in

the context of a speci�c decision problem and hence a speci�c class of rules,

a level of transaction costs, a position in the market and most importantly

a utility function. A generally optimal technical trading rule is therefore a

chimera and hence choices from any class of rules should be derived from
explicit criteria based on some decision problem.
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Relaxing investors� knowledge of the stochastic behaviour of returns to a

realistic level, we develop a simple model for how Technical Analysts might

behave in environments where they can learn from experience. An agent

using a simple learning model to make choices among technical trading rules

is called an Arti�cial Technical Analyst. This construct is useful because it

provides a way to empirically evaluate claims of real-world technical analysts

that �nancial time-series models are inadequate for their decisions and that

their pro�ts prove markets are not always e¢cient.

In this vein, we use the rules which are optimal for the Arti�cial Tech-

nical Analyst in empirical applications and �nd that in addition to being

subject to fewer data-mining problems than arbitrary �xed rules used in pre-

vious studies, they also lead to more powerful inferences. Consequently, we

suggest that bootstrap based model speci�cation tests based on rule returns

as pioneered by Brock et al. (1992) should be augmented with arti�cially

intelligent agents in the spirit of Sargent (1993).

Finally, we investigate the relationship between trading rule returns and

market e¢ciency. Our analysis has been based on developing and applying a

way of empirically rejecting LIA, the hypothesis that past prices do not a¤ect

investment decisions. Whilst this may seem intuitively plausible, it is a new

de�nition of e¢ciency that has the advantage of being testable independently

of an equilibrium model. It relates to previous notions in that it captures

the main intuition underlying empirical tests of weak-form e¢ciency and is a

necessary condition for some standard theoretical notions of e¢ciency such

as Latham�s (1989) E-e¢ciency. It also has the advantage that it provides a

quanti�able notion of near-e¢ciency.

Our empirical test uses the DJIA index as a proxy for the market portfolio.

For the data considered (daily 1962-1986), LIA can be rejected for agents with

mean-variance utility facing low enough transaction costs; however, there do

exist other risk-averse agents who cannot be shown to �nd conditioning on

past prices to be useful. We interpret the magnitude of transaction costs

and the generality of the preferences for which this hypothesis is rejected as

a measure of market e¢ciency. An interesting experiment which we must

leave for future investigations is the comparison of the size of this measure

to ones obtained from other �nancial series. We note that a by-product of

our analysis is the observation that under general assumptions the variance

of trading rule returns are inversely related to their mean.

There are many natural extensions of this work so we can only make

a few indicative suggestions. Firstly, the Arti�cial Technical Analyst could
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be made more intelligent by making his learning more sophisticated and by

widening the space of trading rules from which he may choose. Secondly,

it would be important to try and �nd models for returns that are consis-

tent with returns obtained by the Arti�cial Technical Analyst. Finally, it is

quite easy to extend the framework so as to allow for analysts who choose

rules conditional on variables other than past prices. This indicates that the

Arti�cial Technical Analyst is capable even of fundamental analysis.

29



References

[1] Acar E., 1998,�Expected returns of directional forecasters�, in Acar E. and

Satchell S. (eds), Advanced Trading Rules, Butterworth Heinemann.

[2] Allen F., Karjalainen R., 1996, �Using Genetic Algorithms to �nd Technical

Trading Rules�, working paper, University of Pennsylvania.

[3] Allen P. M., Phang H. K., 1994, Managing Uncertainty in Complex Systems:

Financial Markets, in Evolutionary Economics and Chaos theory, in L. Leyes-

dor¤, P. Van den Besselaar,(eds) 1994, Evolutionary Economics and Chaos

Theory, Pinter, London.

[4] Allen P. M., Phang K., 1993, Evolution, Creativity and Intelligence in Com-

plex Systems, in H. Haken and A. Mikhailov (eds.), Interdisciplinary ap-

proaches to Nonlinear Complex Systems, Springer-Verlang, Berlin, 1993.

[5] Allen H, Taylor M. P.,(1990), �Charts, Noise and Fundamentals in the London

Foreign Exchange Market�, Economic Journal, 100, pp.49-59

[6] Allen H.,Taylor M. P.(1989), The Use of Technical Analysis in the Foreign

Exchange market., Journal of International Money and Finance 11: 304-314.

[7] Arthur W. B., 1992, �On learning and adaptation in the economy�, Santa Fe

Institute wp 92-07-038.

[8] Arthur W. B., Holland J. H., LeBaron B., Palmer R., Tayler P., 1996, Asset

Pricing Under Endogenous expectations in an Arti�cial Stock Market, Santa

Fe Institute working paper.

[9] Black, F., 1986, �Noise�, Journal of Finance 41, 529-43.

[10] Blume L., Easley D., O�Hara M., 1994, Market Statistics and Technical Analy-

sis: The role of Volume, Journal of Finance, Vol. XIIX, No. 1.

[11] Brock W., Lakonishok J., LeBaron B., 1991, Simple Technical Trading Rules

and the Stochastic properties of Stock Returns, Santa Fe Institute working

paper.

[12] Brock W., Lakonishok J., LeBaron B., Simple Technical Trading Rules and

the stochastic properties of Stock Returns, Journal of Finance, 47(5): 1731-

1764.

[13] Brown David P, and Robert H. Jennings, �On Technical Analysis�, Review of

Financial Studies, 2(4), 527-55.

30



[14] Clements M. P., Hendry D. F., 1996, �Forecasting in Macroeconomics�, in Cox

D. R., Hinkley D. V. and Barndo¤-Nielsen O.E. (eds.), Time Series Models

in econometrics, �nance and other �elds,

[15] Cooper Ian and Evi Kaplanis, 1994, �Home Bias in Equity Portfolios, In�ation

hedging and International Capital Market Equilibrium�, Review of Financial

Studies, 7, 1, pp. 45-60.

[16] Chiang T. F., 1992, Technical Trading Rules Based on Classi�er Systems: A

New Approach ro Learn from Experience, Unpublished Dissertation UCLA.

[17] Conroy R., Harris R., 1987, Consensus Forecasts of Corporate Earnings: An-

alysts� Forecasts and Time Series Methods.� Management Science 33 (June

1987):725-738.

[18] Christo¤erson P. F., Diebold F. X., (1996), �Further results on Forecasting and

Model Selection Under Asymmetric Loss�, Journal of Applied Econometrics,

11, 561-571..

[19] Cumby R. E., D. M. Modest, 1987, �Testing for Market Timing Ability: A

framework for forecast evaluation�, Journal of Financial Economics 19, pp169-

189.

[20] Curcio R., Goodhart C., 1991, Chartism: A Controlled Experiment., Discus-

sion Paper #124, Financial Markets Discussion Group Series, LSE.

[21] Fama E., 1970, �E¢cient Capital MArkets: A review of Theory and Empirical

Work�, Journal of Finance 25, May, 383-417.

[22] Gencay Ramazan, 1996, �Non-linear Prediction of Security Returns with Mov-

ing Average Rules�, Journal of Forecasting, 15, 165-174.

[23] Goldberg M. D., Schulmeister S., (1989), �Technical Analysis and Stock Mar-

ket E¢ciency�, Wissenschaftszentrum Berlin fur Sozialforschung, Berlin.

[24] Hanoch G., Levy H., 1969, �The e¢ciency analysis of choices involving risk�,

Review of Economic Studies, 36, 335-346.

[25] Hudson R., Dempsey M., Keasey K., �A note on the weak form e¢ciency

of capital markets: The application of simple technical trading rules to UK

stock prices - 1935 to 1994.�, Journal of Banking and Finance 20, 1121-1132.

[26] Hussman John, 1992, �Market E¢ciency and Ine¢ciency in Rational Expec-

tations Equilibria�, Journal of Economics Dynamics and Control, 16, 655-680.

31



[27] Jensen M., 1978., �Some anomalous evidence regarding market e¢ciency�,

Journal of Financial Economics 6(2-3), 107-147.

[28] Kandel S., Stambaugh R. F., 1996, �On the predictability of stock returns:

An asset-allocation perspective�, Journal of Finance, LI, 2.

[29] Kaufman, 1978, Commodity Trading Systems and Methods, John Wiley &

Sons.

[30] Kho B. C., 1996, Time-varying risk premia, volatility and technical trading

rule pro�ts: Evidence from foreign currency futures markets, Journal of Fi-

nancial Economics 41:249-290.

[31] Lakonishok J, Vishny R. W., Shleifer A, 1993, �Contrarian Investment, Ex-

trapolation and Risk�, NBER, wp 4360.

[32] Latham, Mark, 1986, �Informational E¢ciency and Information Subsets�,

Journal of Finance, XLI, 1., pp.39-52.

[33] LeBaron B., 1998, �Technical Trading rules and Regime shifts in Foreign Ex-

change�, in Acar E. and Satchell S. (eds), Advanced Trading Rules, Butter-

worth Heinemann.

[34] LeBaron B., 1998b, �An evolutionary bootstrap method for selecting dynamic

trading strategies�, SSRI w.p. 9805.

[35] LeBaron B, 1992, �Do Moving Average Trading Rule Results Imply Nonlin-

earities in the Foreign Exchange Markets?�, U. Wisconsin w.p..

[36] Leitch G. and J.E. Tanner, 1991, �Economic Forecast Evaluation: Pro�ts

Versus the Conventional Error Measures�, AER 81(3), pp. 580-590.

[37] Levich R., and L. Thomas, 1993, �The signi�cance of technical-trading rulles

pro�ts in the foreign exchange market: A bootstrap approach�, Journal of

International Money and Finance, 56, 269-290.

[38] Markowitz, 1987, Mean Variance Analysis in Portfolio Choice and Capital

Markets, McMillan.

[39] Marimon M., McGrattan E., and Sargent T., �Money as a Medium of Ex-

change in an Economy with Arti�cially Intelligent Agents�, Journal of Eco-

nomic Dynamics and Control, 14, 329-74.

[40] Malkiel B. G., 1992, �E¢cient Market Hypothesis�, in Eatwell J., Milgate M.

and P. Newman (eds.), The New Palgrave Dictionary of Banking and Finance,

McMillan.

32



[41] Merton R. C., 1981, �On market timing and investment performance, I: An

equilibrium theory of market forecasts�, Journal of Business 54, 363-406.

[42] Murphy J. J., 1986, Technical Analysis of the Futures Markets, New York:

New York Institute of Finance.

[43] Neely C., Weller P., Dittmar R., 1996, �Is Technical Analysis in the Foreign

Exchange Market Pro�table? A Genetic Programming Approach�,CEPR d.p.

#1480.

[44] Neftci S. N., 1991, �Naive Trading Rules in Financial Markets and Wiener-

Kolmogorov Prediction Theory: A Study of �Technical Analysis� �, Journal of

Business, 64(4).

[45] Olsen R. B., M. M. Dacorogna, U. A. Müller, O. V. Pictet, 1992, �Going Back

to the Basics -Rethinking Market E¢ciency�, O&AResearch Group discussion

paper.

[46] Pau L. F., 1991, Technical analysis for portfolio trading by symmetric pat-

tern recognition, Journal of Economics Dynamics and Control, Journal of

Economic Dynamics and Control 15, 715-730.

[47] Pictet O. V., Dacorogna M. M., Dave R. D., Chopard B., Schirru R.,

Tomassini M., 1996, �Genetic Algorithms with collective sharing for robust

optimization in �nancial applications�, Neural Network World, 5(4), pp.573-

587.

[48] Ross, S.A., 1987, �the Interrelations of Finance and Economics; Theoretical

Perspectives�, AER, 77(2), 29-34.

[49] Sargent T. J., 1993, Bounded Rationality in Macroeconics, Oxford: Claredon,

Oxford University Press.

[50] Satchell Steve and Alan Timmerman, 1995, An Assesment of the Economic

Value of Non-linear Foreign Exchange Rate Forecasts, Journal of Forecasting,

Vol. 14, 477-497.

[51] Skouras S., 1997, �Analysing Technical Analysis�, European University Insti-

tute working paper 97-36.

[52] Skouras S., 1996, �A Theory of Technical Analysis (Unabridged)�, Mimeo.

Draft 1, European University Institute.

[53] Sullivan Ryan, Timmerman Allan and Halbert White, 1997, �Data-snooping,

technical trading rule performance and the bootstrap�, UCSD working paper.

33



[54] Taylor S. J., 1994, �Trading Futures using a channel rule: A study of the

predictive power of technical analysis with currency examples�, Journal of

Futures Markets, 14(2), pp.215-235.

[55] Taylor S. J., 1992, �Rewards Available to Currency Futures Speculators: Com-

pensation for Risk or Evidence of Ine¢cient Pricing�, Economic Record, Sup-

plement.

[56] Treynor J. L., Ferguson R., 1985, In Defence of Technical Analysis, Journal

of Finance, XL, 3.

[57] Tolley H. D., Pope R. D., 1988, Testing for Stochastic Dominance, Journal of

Agricultural Economics.

34



0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200
Evolution of optimal moving average memory (n) overtime

0 1000 2000 3000 4000 5000 6000 7000
0

0.005

0.01

0.015
Evolution of optimal moving average window (lamda) overtime

Figure 1: Evolution of each optimal parameter n¤
t
and ¸¤

t
respectively, during

t 2
£
TS ; TF

¤
:

35



0
50

100
150

200

0

0.005

0.01

0.015

0.02
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

Figure 2: Mean Returns of each rule (n; ¸). The mean is taken over t 2

[Ts; Tf ]:

36



0.94 0.96 0.98 1 1.02 1.04 1.06
−1

0

1

2

3

4

5

6
x 10

−4

Figure 3: This is cM(°) the sample version of M (°)

37


