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Abstract

The widespread use and proven pro�tability of technical trading rules

in �nancial markets has long been a puzzle in academic �nance. In this

paper we show, using an agent-based model of an evolving stock mar-

ket, that widespread technical trading can arise due to a multi-person

prisoners' dilemma in which the inclusion of technical trading rules to a

single agent's repertoire of rules is a dominant strategy. The use of this

dominant strategy by all traders in the market creates a symmetric Nash

equilibrium in which wealth earned is lower and the volatility of prices is

higher than in the hypothetical case in which all agents rely only on funda-

mental rules. Our explanation of this lower wealth and higher volatility is

that the use of technical trading rules worsens the accuracy of the predic-

tions of all agents' market forecasts by contributing to the reinforcement

of price trends, augmenting volatility, and increasing the amount of noise

in the market.

1 Introduction

Technical and fundamental forecasting rules are widely used by traders in �nan-

cial markets. While fundamental rules are based on the assumption that prices

should stay close to their true worth (the discounted worth of future returns),

technical rules are based on the assumption that prices move in predictable

historical patterns [30, 31].

The usefulness of fundamental trading rules is adequately explained by the

standard theory of eÆcient markets [8, 17, 12, 14]. In informationally eÆcient

markets consisting of homogeneous agents with rational expectations, the theory

predicts that prices should closely track fundamental values, and so it should

be possible for an agent to make higher-than-normal pro�ts only in the case
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that she successfully forecasts changes in stock fundamentals. Thus fundamen-

tal rules might provide accurate forecasts of stock values. Technical trading

rules on the other hand, can not be useful forecasters in such markets. Since

historical patterns yield no useful information about future stock prices beyond

their implications for the stream of dividends, attempting to forecast future

prices based on historical patterns should not be pro�table. Thus, traditional

theoretical models have a diÆcult time explaining the proven pro�tability of

technical trading rules in �nancial markets [32, 16, 7, 33].

A wide variety of theoretical and empirical models have been developed to

explain why technical trading is widespread in �nancial markets [18, 19, 29,

32, 13, 11, 23, 26]. This paper uses evidence from an agent-based arti�cial

model of a stock market to explore an explanation of this phenomenon. The

key characteristic of this model is that agents' expectations do not follow a

�xed rule such as a rational expectations rule. Instead agents choose among an

evolving set of expectation rules depending on which ones have proved to be the

most successful predictors of recent stock-price changes.

Using this framework, we show �rst that in a market in which all other

traders follow strictly fundamental rules of the kind that would characterize

an eÆcient-market equilibrium, an individual agent might gain from adding

technical trading rules to her repertoire of forecasting techniques. Second, using

a game theoretic analysis, we show that while the use of technical trading rules

(in addition to fundamental rules) is the optimal strategy of a single agent,

the use of this strategies by all agents in the market drives the market to a

symmetric Nash equilibrium at which wealth is lower for all agents than in a

hypothetical equilibrium where all agents use only fundamental rules.

Our explanation of this phenomenon is that the adoption of technical-trading

strategies by all agents in the market adds to the noise in the market and thus

make it more diÆcult for everyone to predict future stock-price movements than

in a regime where only fundamental rules are used. Because their predictions

are less accurate, the presence of technical trading makes agents in the market

worse o�. Thus, our results suggest that technical trading leads to a prisoners'

dilemma in which individual decisions lead to an ineÆcient social outcome.

Section 2 below describes the Santa Fe Arti�cial Stock Market model that we

use in our argument, section 3 explains our experimental framework, sections 4

and 5 present and explain the results of our experiment, and section 6 concludes

by explaining the relevance of these results to the real world.

2 The Santa Fe Arti�cial Stock Market

The Santa Fe Arti�cial Stock Market described in this paper was developed by

Brian Arthur, John Holland, Blake LeBaron, Richard Palmer, and Paul Taylor

[27, 3]. It is an agent-based arti�cial model in which agents continually explore

and develop forecasting models, buy and sell assets based on the predictions of

those models that perform best, and con�rm or discard these models based on

their performance over time. At each time period in the market, each agent
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acts independently, following her currently best models, but the returns to each

agent depend on the decisions made simultaneously by all the other agents in

the market.

The following sections provide a brief introduction to the Santa Fe Arti�cial

Stock Market model. More detailed descriptions are available elsewhere [27,

3, 24, 20]. When mentioning model parameters below, we indicate the speci�c

parameter values we used in the work reported here with typewriter font inside

brackets [like this].

2.1 The Market

The market contains a �xed number N [25] of agents each of whom is endowed

with an initial sum of money (in arbitrary units) [10000]. Time is discrete. At a

given time period each agent decides how much of her money to invest in a risky

stock and how much to invest in a risk-free asset. The risk-free asset is perfectly

elastic in supply and pays a constant interest rate r [10%]. The risky stock, of

which there are a total of N shares, pays a stochastic dividend dt that varies

over time according to a stationary �rst-order autoregressive process with a

�xed coeÆcient [0.95]. The past and current-period realization of the dividend

is known to the agents at the time they make their investment decisions.

2.2 Agents and Market Forecasting Rules

Agents must make decisions to allocate their wealth between the risky stock

and the risk-free asset. They do this by forecasting the price of the stock in the

next time period. This forecast, in turn, is based on one of a set of [100] rules,

each of which has the following form:

if (the market meets condition Di) then (a = kj ; b = kl)

where Di is a description of the state of the market, kj and kl are constants,

and a and b are forecasting parameters. The values of the variables a and b are

used to make a linear forecast of next period's price using the equation:

E(pt+1 + dt+1) = a(pt + dt) + b:

The forecasting parameters a and b are initially selected randomly from a uni-

form distribution of values centered on the values that would create a homoge-

neous rational-expectations equilibrium in the market [3].

Market descriptors fDig match certain states of the market by an analysis

of the price and dividend history. The descriptors are boolean functions that

relate to a number [14] of \market conditions." The response of each rule to

the set of market conditions is represented as an array of bits in which 1 signals

that the rule is to be used only if that condition is true, 0 indicates that the rule

is to be used only if the condition is false, and # indicates that that condition

is irrelevant for the application of the rule.1

1Since there are 14 boolean market descriptors, it is possible to distinguish 214 di�erent
market states.

3



The breadth and generality of the market states to which a speci�c rule

applies depends positively on the number of # symbols in its market descriptor;

rules with descriptors with many 0s and 1s recognize more narrow and speci�c

market states. As the market evolves, these strings are modi�ed periodically by

a genetic algorithm, so the number of 0s and 1s might go up or down, allowing

them to respond to more speci�c or general market conditions. An appropriate

re
ection of the complexity of the population of forecasting rules possessed by

the agents is the number of speci�c market states that their rules can distinguish.

This is measured by calculating the number of bits that are set to 0 or 1 in the

rules' market descriptors.

There are two main categories of market conditions to which descriptors are

attached. One pertains to the recent history of the stock price; the descriptors

associated with these conditions are called technical trading bits. The other

main kind of conditions pertains to the relationship between the stock's price

and its fundamental value; the descriptors of these conditions are called funda-

mental trading bits. (Two aditional condition bits were set at \always on" and

\always o�" to re
ect the extent to which agents act on useless information.)

While trading rules based solely on fundamental conditions and descriptors de-

tect immediate over- or under-valuation of a stock, technical trading rules detect

recent patterns of increase or decrease in stock prices and might predict a con-

tinuation or reversal of the trend (depending on the associated values of a and

b).

The market conditions corresponding to the descriptors in the technical fore-

casting rules (i.e., rules with some fundamental trading bits set) take one of these

two forms:

\Is the price greater than an n period moving-average of past prices?"

where n 2 f5; 20; 100; 500g.

\Is the price higher than it was n periods ago?" where n 2 f5; 20g.

The conditions in the fundamental rules (i.e., rules with only fundamental bits

set) all take this form:

\Is the price greater than n times its fundamental value?" where

n 2 f 1
4
; 1
2
; 3
4
; 7
8
; 1; 9

8
g.

In the present context, then, fundamental rules are sensitive to only current

prices and dividends; they ignore any trends in those quantities. Only technical

rules can detect any patterns in the market.

In an equilibrium corresponding to the predictions of the eÆcient markets

theory, agents would use only an optimal fundamental rule (based on the actual

parameters of the time-series process driving dividends) which would outperform

all rules based on technical conditions. Our model di�ers from this in that

agents do not know the parameters of the dividend process, and thus they

must experiment with alternative forecasting rules based on fundamental (and

perhaps technical) conditions in seeking to improve their forecasts.
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An example might help clarify the structure of market forecasting rules.

Suppose that there is a two-bit market descriptor, the �rst bit of which cor-

responds to the market condition in which the price has gone up over the last

�fty periods, and the second bit of which corresponds to the market condition in

which the price was 75% higher than its fundamental value. Then the descriptor

10 matches any market state in which the stock price has gone up for the past

�fty periods and the stock price is not 75% higher than its fundamental value.

The full decision rule

if 10 then (a = 0:96; b = 0)

can be interpreted as \If the stock's price has risen for the past �fty periods and

is now not 75% higher than its fundamental value, then the (price + dividend)

forecast for the next period is 96% of the current period's price."2

If the market state in a given period matches the set of descriptors of a fore-

casting rule, the rule is said to be activated. A number of an agent's forecasting

rules may be activated at a given time, thus giving the agent many possible fore-

casts among which to choose. The agent decides which of the active forecasts

to use by measuring each rule's accuracy and then choosing at random from

among the active forecasts with a probability proportional to accuracy. Once

the agent has chosen a speci�c rule to use, the rule's a and b values provide a

forecast of next period's price.

Forecasts are used to make an investment decision through a standard risk

aversion calculation. Each agent possesses a constant absolute risk-aversion

(CARA) utility function of the form

U(Wi;t+1) = �exp(��Wi;t+1)

whereWi;t+1 is the wealth of agent i at time t+1, and 0 < �[0.5] � 1000. This

utility function is maximized subject to the following constraint:

Wi;t+1 = xi;t(pt+1 + dt+1) + (1 + rf )(Wi;t � ptxi;t)

where xi;t is agent i's the demand for the stock at time period t. Under

the assumption that agent i's predictions at time t of the next period's price

and dividend are normally distributed with (conditional) mean and variance,

E[pt+1 + dt+1], and �2i;t;p+d, and the distribution of forecasts is normal, agent

i's demand for the stock at time t, should be [3]:

xi;t =
Ei;t(pt+1 + dt+1)� p(1 + r)

��2
i;t;p+d

The bids and o�ers submitted by agents need not be integers; the stock is

perfectly divisible. The aggregate demand for the stock must equal number of

shares in the market.

2Recall that the actual descriptors used in our modeling exercises contain 14 descriptors
rather than just two.
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Agents submit their decisions to the market specialist|an extra agent in the

market who functions as a market maker. The specialist collects bids and o�ers

from agents, announces a `trial price', and if the market does not clear or if his

inventory does not stay within acceptable bounds, repeats this process. When

the market clears, the `trial price' becomes the current period's market price.

2.3 Evolution of Market Forcasting Rules

A genetic algorithm (GA) provides for the evolution of the population of fore-

casting rules over time. Whenever the GA is invoked, it substitutes new fore-

casting rules for a fraction [12%] of the least �t forecasting rules in each agent's

pool of rules. A rule's success, or \�tness" is determined by both how accurately

it has forecasted prices and by how complex it is (the GA has a bias against

complex rules). New rules are created by �rst applying the genetic operators of

mutation, crossover, and inversion to the bit strings of the more successful rules

in the agent's rule pool. The forecasting parameters a and b of the o�spring

are a linear combination of the forecasting parameters of the parent rules. New

rules are assigned an initial accuracy rating by averaging the accuracy of their

parent rules.

The GA may be compared to a real-world consultant. It replaces current

poorly performing rules with rules that are likely to perform better much the

same way as a consultant urges her client to replace poorly performing trading

strategies with those that are likely to be more pro�table.

It is important to note that agents in this model learn in two ways: First,

as each rule's accuracy varies from time period to time period, each agent pref-

erentially uses the more accurate of the rules available to her; and, second, on

an evolutionary time scale, the pool of rules as a whole improves through the

action of the genetic algorithm.

3 Experimental Methods

In this paper we study one particular aspect of an agent's general strategy

for trading in the market: whether technical rules should be included in her

collection of forecasting rules. So, in this framework an agent's strategy is either

to include technical trading rules in her repertoire of trading rules, or to exclude

them entirely and instead use only fundamental rules. We restrict our attention

to just these two strategies to make our argument simple but realistic. In

particular, we exclude the strategy of using only technical rules as unrealistic;

no matter how much faith people have in technical trading rules, they generally

seem to take economic fundamentals into consideration as well.

To investigate whether or not including technical trading rules is advan-

tageous for traders, we contemplate a single agent confronted with a choice

between our two strategies. The agent assumes that other traders in the market

all follow one or the other of these two strategies|either all include techni-

cal trading rules or all exclude them|but the agent does not know which of
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these two possibilities occurs. Thus, the agent confronts a classic 2� 2 decision

problem.

To make a rational decision, the agent needs to know the relative value or

payo� of each choice in each situation. Our criterion for social and individual

welfare is terminal or �nal wealth.3 So, to determine the payo�s in the decision

matrix, we observed the �nal wealth of the agent in four di�erent conditions:

A The agent includes technical rules and all other traders include them.

B The agent includes technical rules and all other traders exclude them.

C The agent excludes technical rules and all other traders include them.

D The agent excludes technical rules and all other traders exclude them.

By comparing the agent's payo�s in these four possible situations, we can de-

termine whether there is a dominant strategy for this decision.4

Note that, since all agents in the market act independently and simultane-

ously, each time period in the market can be considered to be a multi-person

simultaneous-move game. Furthermore, each agent's decision can be construed

in exactly the form of the single agent considered above. So, if the single-agent

decision considered above has a dominant strategy, it will be rational for all

agents to use it and the simultaneous-move game will reach a symmetric Nash

equilibrium [5]. Thus, situations A and B above are the only potential sym-

metric Nash equilibria in our context.

Expected payo�s in situations A{D were determined by simulating the ar-

ti�cial market 45 times in the four corresponding circumstances. In each simu-

lation, there were 26 agents in the market: one agent following a given strategy

and 25 other agents all following another given strategy (possibly the same

strategy as the single agent). Each simulation was run for 300,000 time periods

to allow the asymptotic properties of the market to emerge and to reduce the

dependence of the results on initial conditions. The same 45 random sequences

for dividends and initial distributions of rule descriptors among agents were

used for all four experiments.

Previous work has shown that the evolutionary learning rate is a crucial

parameter controlling the behavior of this model. All our simulations here were

carried out at a learning rate of 100, i.e., with the genetic algorithm invoked

for each agent once every 100 time periods. We chose this learning rate for two

related reasons. First, we wanted to insure that agents had a realistic possibility

of using technical trading rules. Since previous work [27, 3, 24, 20] has �rmly

established that high (statistically signi�cant) technical trading actually occurs

in the market only at learning rates in this neighborhood, our experimental

design requires us to use such a rate. Furthermore, recent work [21] has shown

3The �nal wealth of an agent in the market includes wealth from all sources: interest
payments from the risk free asset, returns from stocks, and cash holdings (money not invested).

4A dominant strategy is de�ned as one that outperforms all other strategies regardless of
the strategies being used by other agents [5].
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All Other Traders

technical rules

included

technical rules

excluded

include

technical rules

A: 113 � 6.99 B: 154 � 6.68

The Agent

exclude

technical rules

C: 97 � 6.68 D: 137 � 5.10

Table 1: The decision table for an agent contemplating whether to include

technical trading rules to make her market forecasts, when she is uncertain

whether or not the other traders in the market are doing so. The agent's payo�

in each of the four situations A{D is her expected �nal wealth (divided by 104,

to make more readable), derived by averaging the results of 45 simulations of

each situation. Errors bounds are calculated using standard deviations of the

45 simulations.

that agents will choose this learning rate if given the choice, for this learning rate

maximizes their wealth. Thus, market behavior at radically di�erent learning

rates has dubious relevance to our investigation.

4 Results

Table 1 shows the expected payo�s to the agent in the four situations A{D.

These payo�s were calculated by averaging the agent's �nal wealth in repeated

simulations of each of the four situations. This decision matrix supports three

conclusions.

First, note that the agent's dominant strategy is to include technical trading

rules, since the payo� in A exceeds that in C and the payo� in B exceeds that

in D. No matter what strategy the other agents in the market might be using,

it's always advantageous for the agent to include technical trading in his market

forecasting rules.

Second, recall that each agent in the market faces decision problem described

in Table 1, which creates the multi-person simultaneous-move game we described

above. Since including technical trading is each agent's dominant strategy, the

strategy of including technical trading is the one and only symmetric Nash equi-

librium of the simultaneous-move game. The state in which everyone excludes

technical trading is unstable. Imagine the market is temporarily in that state.

Then, since the expected payo� in situation B exceeds that in situation D, it

is in each agent's advantage to switch to including technical trading. Rational
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decision theory drives the market to the situation in which everyone includes

technical trading.

Third, note that the expected payo� in situation A is less than the expected

payo� in situation D. Thus, the expected aggregate wealth is less if everyone

includes technical trading than if everyone excludes technical trading. In other

words, everyone is better o� if no one includes technical trading. When everyone

follows the same strategy, it is socially optimal for no one to engage in technical

trading. So, engaging in technical trading leads the market to a sub-optimal

state. The market gets locked into a less desirable equilibrium.

Thus, technical trading creates a prisoner's dilemma problem in the market.

Although it is to the social advantage if everyone foregoes technical trading,

each individual has an incentive to cheat. In the aggregate, then, if everyone

does what is rational for her, all will engage in technical trading and thus make

themselves all worse o�.

Figures 1{4 show time series data from typical simulations of each of the

four situations in the decision matrix of our agents. The top of each �gure

compares how the accumulated wealth of the individual agent compares with

that of the rest of the traders. The middle and bottom of each �gure show the

extent of technical trading in the market. Speci�cally, they represent those bits

in the agents' forecasting rules that are set to non-null (i.e., non-# values) The

percentage of those bits that are set to conditions recognized by fundamental

rules are shown in the middle plot, and the percentage of those bits that are set

to conditions recognized by technical rules are shown in the bottom plot.

These �gures illustrate the market's behavior in the four situations. We see

the signi�cant advantage in accumulated wealth that technical trading creates

in situations B and C (Figures 2 and 3), and we see illustrations of the di�erent

�nal wealth reported in Table 1. It is clear that agents take advantage of

technical trading when they can. Note that 80% of those bits used in the agents'

trading rules are technical bits in Figure 1, with similar levels of technical trading

evident in those agents that include technical trading in Figures 2 and 3. Thus,

it is precisely the occurrence of technical trading that explains the di�erent

expected payo�s in Table 1. When agents are given the opportunity to include

technical trading in their market forecasts, they overwhelmingly do so.

5 Discussion

These results raise two important questions: (i) Why are agents led to an equi-

librium in which everyone uses technical trading? (ii) Why is everyone worse

o� when everyone engages in technical trading?

We are attracted to the following answer to question (i). Assume that the

price stream contains some de�nite trends. (In the present case, the price trends

are due in part at least to the autoregressive form of the dividend stream; recall

section 2.1 above. But the same argument applies no matter what causes the

price trends.) Assume, further, that technical trading rules can detect these

trends. Then if only a single agent discovers the technical trading rules, she
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Figure 1: Time series data from a typical simulation of situation A, in which

all agents include technical rules. The solid lines are data from the single agent

and the dotted lines are data averaged from all other agents. (The accumulated

wealth plot shows the entire duration of the simulation, but the plots of funda-

mental and technical bits set are blow ups of the last �fth of the simulation.)

Top: The wealth of the agents. Middle: The percentage of the bits set in

trading rules (of all agents in the market) that are fundamental bits in the �nal

�fth of the run. Bottom: The percentage of bits set that are technical bits

in the �nal �fth of the run. The number of technical and fundamental bits set

re
ects the number of technical and fundamental `market states' an agent can

recognize. Note that the number of fundamental and technical bits set for the

single agent is close to the mean for the rest of the population. (The deviations

from this mean are artifacts of the smoothing caused by averaging the data for

all the other agents.)
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Figure 2: Time series data from a typical simulation of situation B, in which

one agent includes technical rules while all others exclude them, analogous to

Figure 1 (see caption above). Note that the singular agent using technical rules

accumulates signi�cantly more wealth than those agents using only fundamental

rules almost all through the run, and that this di�erence grows over time.
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Figure 3: Time series data from a typical case simulation of situation C, in

which one agent excludes technical rules while all others include them, analogous

to Figure 1 (see caption above). Note that, since the singular agent has only

fundamental rules, almost all of the bits set in her rules are fundamental bits.

The higher variance of the percentage of bits set for the single are due to the

fact that this data is not averaged.
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Figure 4: Time series data from a typical simulation of situation D, in which

all agents exclude technical rules, analogous to Figure 1 (see caption above)

except that technical bits are not shown since no agents can use them. Note

that all agents accumulate equivalent wealth and have similarly structured rules.

The higher variance of the percentage of fundamental bits set for the single are

due to the fact that this data is not averaged. Deviations of the data for the

single agent from the mean of the rest of the agent are entirely accidental and

characteristic only of this run.
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can exploit these trends without dissipating them and thus \beat the mar-

ket," earning huge pro�ts. But now, as more agents begin to adopt technical

rules, the incentives for technical trading can reinforce themselves in a new

way. Detailed descriptions of the mechanisms for this are provided elsewhere

[1, 2, 10, 11, 15, 22, 28]. In e�ect, if enough traders in the market buy into

similar enough technical trading rules, positive feedback can make the rules

self-ful�lling prophecies. For example, if all traders believe that the price of a

stock will go up, they will all want to buy the stock, creating an excess demand

and driving its price up|thereby making their belief in a price increase true.

This self-reinforcement process can make technical trading rules more accurate

than fundamental rules that generally predict that the price will revert to its

true value. (Evidence for this positive-feedback in the Santa Fe stock market

has been provided elsewhere [3].)

The mechanism behind this process in the Santa Fe Arti�cial Stock Market

would be the genetic algorithm by which agents' trading rules evolve. If technical

trading rules become more successful, even if merely because they happen to

be self-ful�lling prophecies, they will be likely to survive the culling process of

the GA, and new rules introduced by the GA, their \o�spring", will also be

technical trading rules.

This answer to question (i) implies an answer to question (ii). The self-

ful�lling prophecies created by technical trading dramatically increase the volatil-

ity of prices in the market, causing bubbles and crashes [27, 3, 20, 21]. This

increased noise in the market decreases the accuracy of the forecasting rules

being used. The decreased accuracy of forecasting rules, in turn, drives down

the agents' wealth; less accurate rules are less pro�table. The gains from self-

reinforcing technical trends are short lived; in the long run, correction toward

fundamental value bursts the bubbles.

In other words, the use of a technical trading rule in the market poses a

negative externality. It worsens everyone else's strategies by driving prices away

from the fundamental value and increasing noise. When all agents choose to

perform high technical trading, they worsen each others strategies, there is a

loss of eÆciency and the average returns in the market are lowered.

These explanations �t well with the results of our experiments. In situation

A, high technical trading by all agents lowers everyone's wealth, presumably be-

cause everyone's predictors are less accurate. In situation B, in which only one

agent engages in technical trading, she accumulates signi�cantly more wealth

than the other agents, but since only one agent is cashing in on price patterns,

everyone else's forecasting rules are not rendered inaccurate, so the price pat-

terns do not dissipate in noise. This lack of noise makes the single agent's trend

detectors stronger, which is re
ected in her high �nal wealth (see Figure 2).

If one agent uses only fundamental rules but everyone else uses technical

rules (situation C, Figure 3), the fundamental trader is worse o� than the other

agents. The market is so noisy that fundamental strategies have little value;

technical traders are driving short-term price patterns so prices do not obey her

fundamental predictions and she ends up worse o�.

Situation D (Figure 4) is the best global state. All agents in this case rely
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solely on fundamental rules. The absence of technical trading rules reduces

the noise in the market, strengthening the accuracy of agent's predictors, thus

leading them to accumulate higher levels of wealth over time.

Statistics of the price stream in the Santa Fe Arti�cial Stock Market provide

further support for these explanations. When all agents use fundamental trading

strategies, agents show behavior that is consistent with the theory of rational

expectations. When the price is over-valued, agents predict that the price will

fall and thus drive the price down. Consequently, the volatility of prices is low

and prices stay close to fundamental values. Trading still occurs because the

market is constantly changing. But when agents include technical rules in their

pool of forecasting rules, the market becomes unstable. Bubbles and crashes

occur frequently. The volatility of prices roughly doubles and prices deviate

from fundamental values for extended periods of time, having about a third the

correlation compared to when only fundamental trading rules are used.

An alternate explanation of our results reported above is that, when only one

agent exploits these patterns in the market, this agent beats the market (as we

described above), but if all agents use technical trading rules, they dissipate the

patterns, thereby making the market more eÆcient and allowing the agents to

accumulate less wealth. However, we �nd it diÆcult to reconcile this explanation

with the bubbles, crashes and positive-feedback observed in the market [3, 20].

We should reiterate that the observed advantage enjoyed by a singular tech-

nical trader is no surprise. The autoregressive dividend stream creates structure

in the price stream that fundamental traders cannot detect, so a single techni-

cal trader can exploit this structure without destroying it. What is notable is

that the wholesale adoption of technical trading worsens everyone's earnings so

much that a prisoner's dilemma is created. Furthermore, the explanation for

this result in no way depends what causes price patterns that technical trading

exploits. Both real and arti�cial markets can have many kinds of patterns in

prices, and in general these are not driven by external structure in dividends. No

matter how these patterns arise, our results suggest that, while a single trader

who discovers these patterns can pro�t signi�cantly, if all traders discover the

patterns they dissipate them by exploiting them, thus lowering pro�ts for all.

6 Summary and Conclusion

Our simulations using the Santa Fe Arti�cial Stock Market suggest that �nancial

markets can end up in a prisoner's dilemma, creating a sub-optimal strategic

equilibrium in which extensive technical trading creates market volatility and

thus reduces earnings. We show that each agent will choose to include technical

trading rules in his repertoire of forecasting rules, even if other traders use

only rules based on stock-price fundamentals. Including technical rules is the

dominant strategy of the game because it makes each agent better o� regardless

of what strategy other traders in the market follow.

Because this singular agent's decision is mirrored by a decision for every

other trader in the market, we have a multi-person game in which each agent
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has a dominant strategy. The use of this dominant strategy by all agents in

the population, however, drives the market to a symmetric Nash equilibrium

at which the average �nal wealth of agents in the market is lower than in the

hypothetical equilibrium in which everyone uses only fundamental trading rules.

Our explanation of this reduced wealth is that the wide-spread use of technical

trading rules worsens the accuracy of the predictions of all agents by reinforcing

price trends, augmenting volatility, and making the market more noisy.

Though the model considered in this paper is an extreme simpli�cation of

real-world stock markets, we believe that it captures some essential elements of

such markets. Moving away from assumption of rational expectations, with its

implication that agents know the underlying structure of the stochastic processes

driving the model, allows us to mimic the kind of asymmetric model uncertainty

and learning that we observe in actual markets. Our market models the pro-

cess of searching for the ideal forecasting rule explicitly through a mechanical,

yet quite sophisticated, learning process. Our analysis leads to an equilibrium

outcome of this process|a volatile market in which the use of technical trad-

ing rules is pervasive|that mirrors some key aspects of real markets that are

contrary to the predictions of some of the most widely accepted models of stock

markets.

Much research remains to be done in establishing the robustness of these

results to variations both in the model's parameters and in the structural design

of the model itself. However, the results obtained in our early explorations point

to a conclusion of great potential importance: that technical trading might be

inevitable, yet traders would end up better o� if it were possible to prevent it.
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