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Abstract

Real-time trading models use high frequency live data feeds and their recommendations
are transmitted to the traders through data feed lines instantaneously. The contributions
of this paper are twofold. First, the performance of a widely used commercial real-time
trading model is compared with the performance of systematic currency traders. Second,
the real-time trading model is used to evaluate the statistical properties of foreign exchange
rates. The out-of-sample test period is seven years of high frequency data on three major
foreign exchange rates against the US Dollar and one cross rate.

The trading model yields positive annualized returns (net of transaction costs) in all
cases. Performance is measured by the annualized return, two measures of risk corrected
annualized return, deal frequency and maximum drawdown. Their simulated probabil-
ity distributions are calculated with the four well-known processes, the random walk,
GARCH, AR-GARCH and AR-HARCH. The null hypothesis of whether the real-time
performances of the foreign exchange series are consistent with these traditional processes
is tested under the probability distributions of the performance measures. The results
from the real-time trading model are not consistent with these processes.
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1. Introduction

The foreign exchange market is the largest financial market worldwide. It involves actors in
different geographical locations, time zones, working hours, time horizons, home currencies,
information access, transaction costs, and other institutional constraints. The time horizons
vary from intraday dealers, who close their positions every evening, to long-term investors and
central banks. In this highly complex structure, the market participants are faced with different
constraints and use different strategies to reach their financial goals, which differ because of
their heterogeneous risk profiles. The main essence behind the real time trading models is that
they are designed to capture the conditional mean dynamics of the return process under this
complex heterogeneous structure.

Real-time trading models are based on around-the-clock collection and treatment of for-
eign exchange market makers quotes at the tick-by-tick frequency level. The models use live
data feeds and their recommendations are transmitted to the traders through telephone lines
instantaneously. The most important reason for using high frequency data in these models
is to be able to exploit the underlying heterogeneity of the foreign exchange market. In low
frequency data, the intraday market microstructure properties are already averaged out so that
only certain properties of the data generating process can be studied. This framework provides
a general setting where all properties of the market ranging from intraday to long term are
embedded in our econometric methodology.

The contributions of this study are twofold. First, the performance of a widely used commer-
cial real-time trading model is compared to the performance of currency traders using technical
analysis models. Second, the real-time trading model is used as a specification test to uncover
the performance of well-known statistical processes for the price generating process. Moreover,
the rejections of the models by this test provide directions for further research since the trading
models capture medium to long-term mean dynamics of financial markets by indicating positive
performance over long periods.

In the earlier literature, simple technical indicators for the securities market have been tested
by Brock et al. (1992). Their study indicates that patterns uncovered by technical rules cannot
be explained by simple linear processes or by changing the expected returns caused by changes
in volatility'. LeBaron (1992,1997) and Levich and Thomas (1993) follow the methodology of
Brock et al. (1992) and use bootstrap simulations to demonstrate the statistical significance
of the technical trading rules against well-known parametric null models of exchange rates.

n Gengay (1998), the DJIA data set of Brock et al. (1992) is studied with simple moving average indicators
within the nonparametric conditional mean models. The results indicate that nonparametric models with buy-
sell signals of the moving average models provide more accurate sign and mean squared prediction errors
(MSPE) relative to random walk and GARCH models. Gengay (1999) shows that past buy-sell signals of simple
moving average rules provide statistically significant sign predictions for modelling the conditional mean of the
returns for the foreign exchange rates. The results in Gengay (1999) also indicate that past buy-sell signals
of the simple moving average rules are more powerful for modelling the conditional mean dynamics in the
nonparametric models.



In Sullivan et al. (1999), an extensive study of the trading rule performance is examined by
extending the Brock et al. (1992) data for the period of 1987-1996. They show that the trading
rule performance remains superior for the time period that Brock et al. (1992) studied, however,
these gains disappear in the last ten years of the Dow Jones Industrial Average (DJIA) series.
Overall, the scope of the most recent literature supports the technical analysis but it is limited
to simple univariate technical rules. One particular exception is the study by Dacorogna et
al. (1995) which examines real-time trading models of foreign exchanges under heterogeneous
trading strategies. They conclude that it is the identification of the heterogeneous market
microstructure in a trading model which leads to an excess return after adjusting for market
risk. An extensive examination of the statistical properties and modelling methods of high
frequency financial markets can be found in Dacorogna et al. (2000).

One important aspect of our analysis is that the real-time trading model had not been
optimized during the eight years between 1989-1996 which we study. This gives us a unique
platform to control for the data-snooping problems pointed out in Sullivan et al. (1999). The
Brock et al. (1992) study has been mentioned frequently in the popular press® and this may
have caused the patterns discussed in this paper to vanish post 1986, coupled with the low-cost
and fast computing power. In principle, it is impossible to avoid data snooping unless one is in
a real-time context. Even Brock et al. (1992) tried to control for it by selecting their strategy
by studying what traders actually do before looking at the data. This type of strategy may be
considered as data dependent such that the data set and the strategy inevitably coevolved. In
our framework, the model has not been re-optimized during the eight years of real-time feed and
this gives us a unique advantage. There is no socially determined co-evolutionary relationship
between our data set and the technical strategies used in implementing our specification tests®.

The results of this paper indicate that the four currencies pairs, USD-DEM (US Dollar-
Deutsche Mark), USD-CHF (US Dollar-Swiss Franc), USD-FRF (US Dollar-French Franc) and
DEM-JPY (Deutsche Mark-Japanese Yen) yield 9.63, 3.66, 8.20 and 6.43 percent annualized
returns in the sampling period in consideration. These annualized returns are unleveraged, net
of transaction costs and above the risk free interest rate. The Parker Systematic Index reports
cumulated returns net of fees and interest for a class of systematic currency managers®. It
therefore represents a good benchmark for the real-time trading model we study here both in
terms of asset class and methodology. A detailed comparison with the RT'T model performance
shows that the RTT models perform on average 2 percent per year better than the Parker
Systematic Index in the sampling period. Therefore, the RTT model performance is consistent
with the performance of the systematic currency traders.

In the second part of this paper we use simulated data to obtain probability distribu-
tions of RT'T model performances. The simulated probability distributions of the performance
measures are calculated with the random walk, GARCH(1,1) and AR(4)-GARCH(1,1), AR(4)-

2In particular by Hulbert Financial Digest (www.hulbertdigest.com)) which rates investment newsletters
and is widely read by investors.

3We thank a referee for his stimulating comments on this issue.

“In their terminology, “systematic currency managers” means traders who follow technical analysis models.



HARCH(9) processes at the 5-minute data frequency. The null hypothesis of whether the real-
time performances of the foreign exchange series are consistent with these traditional processes
is rejected under the probability distributions of the performance measures.

Since the trading frequency of the model is less than two deals per week, the trading model
does not pick up the five minute level heteroskedastic structure at the weekly frequency. Rather,
the heteroskedastic structure behaves as if it is measurement noise where the model takes
positions and this leads to the rejection of the GARCH(1,1) as a data generation process of the
foreign exchange series. A similar explanation holds for the rejection of the AR(4)-GARCH(1,1).
The model picks up the high frequency serial correlation as a noise and this short-term behavior
works against the process. This cannot be treated as a failure of the real-time trading model.
Rather, this strong rejection is evidence of the failure of the temporal aggregation properties
of the AR(4)-GARCH(1,1) process over lower frequencies.

The conditional mean dynamics of the AR(4)-HARCH(9) model does not help the trading
model capture possible trends because the movements in the prices are too small for the model
to take a position. On the other hand, the simulated series are more volatile due to the fully
absorbed tail dynamics and the long memory effect. In the absence of a weekly conditional
mean information (this information is left to the residuals and is unconditional now), the trad-
ing model cannot interpret these large moves and ends up taking consecutive wrong positions.
Therefore, one implication of our results is that a realistic volatility model should take the scal-
ing properties® of the data into account in estimation. This may, for instance, be accomplished
by carrying out the estimation both in the time as well as in the frequency domain.

This paper is organized as follows. In section two, the performance measures are explained.
In section three, the comparison to the Parker Systematic Index is reported. The simulation
models and the simulation methodology are presented in section four. The technical indicators
and their robustness properties are explained in section five. The trading models are described
in section six. We discuss the empirical results in section seven. We conclude afterwards.

2. Performance Measures

Evaluating the performance of an investment strategy generally gives rise to many debates.
This is due to the fact that the performance of any financial asset cannot be measured only
by the increase of capital but also by the risk incurred during the time to reach this increase.
Returns and risk must be evaluated together to assess the quality of an investment. In this
section we describe the performance measures® used to evaluate the trading models in this
paper. The total return, Ry, is a measure of the overall success of a trading strategy over a

SThe scaling properties of foreign exchange returns and volatilities are studied in Miiller et al. (1990)
and Andersen et al. (1999). LeBaron (1999) demonstrates that a non self-similar process, such as stochastic
volatility, may also exhibit scaling behaviour. Brock (1999) has an extensive and stimulating discussion of the
problem of scaling in economics.

6The performance measures of this paper are also used in Pictet et al. (1992) and Dacorogna et al. (1999).



period T', and defined by
RT = Z 7']' (1)
j=1

where n is the total number of transactions during the period T, j is the jth transaction and r;
is the return from the jth transaction. The total return expresses the amount of profit (or loss)
made by a trader always investing up to his initial capital or credit limit in his home currency.
The annualized return, RT7 4, is calculated by multiplying the total return with the ratio of
the number of days in a year to the total number of days in the entire period. The mazimum
drawdown, Dy, over a certain period T' = tg — to, is defined by Dy = max( Ry, — Ry, | to <
to < t, < tgp ) where R;, and R;, are the total returns of the periods from ¢, to t, and t,
respectively.

In order to achieve a high performance and good acceptance among investors, investment
strategies or trading model performance should fulfill a few conditions: provide high total
return, a smooth increase of the equity curve over time and a small clustering of losses. The
fulfilment of these conditions would account for a high return and low risk investment. In
addition, a performance measure should present no bias towards low frequency models by
always including the unrealized return of the open position and not only the net result after
closing the position. Sharpe (1966) introduced a measure of mutual funds performance which he
called at that time a reward-to-variability ratio. This performance measure was to later become
the industry standard in the portfolio management community under the name of Sharpe ratio,
Sharpe (1994).

Unfortunately, the Sharpe ratio is numerically unstable for small variances of returns and
cannot consider the clustering of profit and loss trades. As the basis of a risk-sensitive perfor-
mance measure, we define a cumulative variable R;, at time ¢, as the sum of the total return
Ry of equation (1) and the unrealized current return of the open position. This quantity re-
flects the current value of the investment and includes not only the results of previously closed
transactions but also the value of the open position (mark-to-market). This means that R, is
measuring the risk independently of the actual trading frequency of the model. Similar to the
difference between price and returns, the variable of relevance for the utility function is the
change of R over a time interval At: X At = Rt — f%t_At where t expresses the time of the
measurement. In this paper, At is allowed to vary from seven days to 301 days.

A risk-sensitive measure of trading model performance can be derived from the utility func-
tion framework (Keeney and Raiffa (1976)). Let us assume that the variable X, follows
a Gaussian random walk with mean X o, and the risk aversion parameter « is constant with
respect to Xa;. The resulting utility u(Xa¢) of an observation is — exp(—aXa;), with an expec-
tation value of @ = u(X o) exp(a?0X,/2), where 03, is the variance of X ;. The expected utility
can be transformed back to the effective return, X .5 = —log(—u)/a where X,p = Xa; — M;At.
The risk term ac%,/2 can be regarded as a risk premium deducted from the original return

where 03, is computed by 03, = L= (Xit — 72&) . Unlike the Sharpe ratio, this measure
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is numerically stable and can differentiate between two trading models with a straight line
behavior (6%, = 0) by choosing the one with the better average return’.

The measure X ¢ still depends on the size of the time interval At. It is hard to compare
Xep values for different intervals. The usual way to enable such a comparison is through the
annualization factor, A%,

— (6]
Xeﬁ,ann,At = AAt Xejj” = X - 5 AAt U2At (2)

where X is the annualized return and it is no longer dependent on At. The factor Amait has a
constant expectation, independent of At. This annualized measure still has a risk term associ-
ated with At and is insensitive to changes occurring with much longer or much shorter horizons.
To achieve a measure that simultaneously considers a wide range of horizons, a weighted aver-
age of several X ¢ qnyn is computed with n different time horizons At;, and thus takes advantage

n
i—1 wiXezﬁ,a,71,n,At ;

of the fact that annualized X g 4nn, can be directly compared X.p = S o L where
the weights w are chosen according to the relative importance of the time horizons At; and may
differ for trading models with different trading frequencies. In this paper, a is set to a = 0.1
when the returns are expressed in percent. If they are expressed in numbers, a would be equal
to 10.

The risk term of X ¢ is based on the volatility of the total return curve against time, where
a steady, linear growth of the total return represents the zero volatility case. This volatility
measure of the total return curve treats positive and negative deviations symmetrically, whereas
foreign exchange dealers become more risk averse in the loss zone and do hardly care about
the clustering of positive profits. A measure which treats the negative and positive zones
asymmetrically is defined to be Ry (Miiller, Dacorogna and Pictet (1993) and Dacorogna et
al. (1999)) where R.g has a high risk aversion in the zone of negative returns and a low one in
the zone of profits whereas X, assumes constant risk aversion. A high risk aversion in the zone
of negative returns means that the performance measure is dominated by the large drawdowns.
The R.s has two risk aversion levels: a low one, ay., for positive AR, (profit intervals) and a
high one, a_, for negative AR, (drawdowns)

0 - ay  for A@ZO
B a_ for AR, <0

where o, < a_. The high value of a_ reflects the high risk aversion of typical market par-
ticipants in the loss zone. Trading models may have some losses but, if the loss observations
strongly vary in size, the risk of very large losses becomes unacceptably high. On the side of the
positive profit observations, a certain regularity of profits is also better than a strong variation
in size. However, this distribution of positive returns is never as wvital for the future of market

"An example for the limitation of the Sharpe ratio is its inability to distinguish between two straight line
equity curves with different slopes.
8 Aa; is the ratio of the number of At in a year divided by the number of At’s in the full sample.



participants as is the distribution of losses (drawdowns). Therefore, a; is much smaller than
a_. In this paper, we assume that a+ = «_/4 and a_ = .20, when the quantities are expressed
in percent.

Both X, and R are quite natural measures. They treat risk as a discount factor to the
value of the investment. In other words, the performance of the model is discounted by the
amount of risk that was taken to achieve it. In the X .4 case the risk is treated similarly both for
positive or negative outcome while in the case of R ¢, negative performance is more penalized.

Amongst annualized returns, X.z and Rz, the last two performance measures are more
stringent since they examine the entire equity curve contrary to the annualized total return.
The annualized return, on the other hand, leaves large degrees of freedom to an infinite number
of equity curve paths by only considering the beginning and the end points of the equity curve
performance.

It is also important to point out that a buy-and-hold strategy, as a benchmark performance
measure, in foreign exchange markets is not appropriate as there is no trend for the main rates
(the Peso effect is only existing for emerging market currencies). This is due to the fact that
foreign exchange markets are, by nature, symmetric and the direction of a buy and hold strategy
is completely arbitrary. The buy-and-hold strategy is more appropriate for the equity markets.

3. Parker Systematic Index and the RT'T Model

The Parker Systematic Index? reports cumulated returns net of fees and interest for a class
of systematic currency managers. It therefore represents a good benchmark for the real-time
trading (RTT) model we study here, both in terms of asset class and methodology. To com-
pare the trading model performance with the Parker Systematic Index, an equally weighted
portfolio of monthly returns of the USD-DEM, USD-CHF, USD-FRF and DEM-JPY models
is constructed. We define the raw return of the portfolio by r; = i E?Zl ri; where r;;’s are the
individual monthly returns of the respective RT'T models. This portfolio is leveraged so that it
reaches the same standard deviation as the Parker Systematic Index (in other words, comparing
two portfolios with the same risk characteristics) over the sample period. This normalization is
obtained by multiplying each monthly raw return by the ratio of the standard deviation of the
Parker Index monthly returns op; and the standard deviation of the monthly returns of our

unleveraged portfolio, orrrp, 77 = U;T% r; . To compute the cumulated return, we simply

9The Parker Systematic Index is a performance-based benchmark that measures both the reported and the
risk adjusted returns of global currency managers. The Index tracks the performance, or value-added, which
managers have generated from positioning long or short foreign currencies. It is equally weighted, as opposed to
capitalization weighted, to preclude very large managers from swaying the performance in a direction that may
not be representative of the currency manager universe. As reported by the Parker Global Strategies, the Parker
Systematic Index currently includes programs managing over $9.4 billion in currency assets. Interested readers
are referred to the web site of the Parker Global Strategies company (http://www.parkerglobal.com/) which
provides these indices.



Cumulative Returns Annualized
Cumulative Return
Parker Systematic Index 104.49% 10.76%

Portfolio of Equally Weighted RTT Models:

Leveraged to equal std deviation 218.01% 17.97%
After mgmt fees of 2% 168.32% 15.15%
mgmt fees + performance fees 130.24% 12.65%

Table 1: Performance comparison between the Parker Systematic index and a
portfolio of the RTT models during the same period from 1.1.1990 to 31.12.1996.

apply the following relation

N N
Crrre = [[1+7) = J]C (3)
i=1 i=1
where N is the number of months in our sample and C; is the capital achieved in the i-th
month.

The trading model raw returns are net of interest but the performance needs to be adjusted
for asset management and performance fees. Although the studied real-time trading model
has not been sold on a performance fee basis, we corrected the returns with the standard
performance and management fees of currency fund managers: 2 percent management fee on
assets is deducted monthly in the following way ¢; = 1+ 7; — f - ¢;_1 where ¢; is the capital
achieved the i-th month net of management fees and f = % - 0.02, which is the monthly
percentage for an annualized 2 percent. This net monthly capital is then multiplied by the
previous one to get the cumulative return as in equation (3). In addition, we deduct an annual
performance fee of 20 percent on net profits. This is done yearly by reducing the capital
accumulated over the year by 20 percent of the net profit as it is customary in actual fund
management environments. The results shown in Table 1 indicate that the yearly trading
model performance is almost 2 percent above the Parker Systematic Index per year in the
sampling period. This is true even after deduction of all management and performance fees
and leads to a capital that is 25 percent larger at the end of the sampling period for the RTT
models.

4. Simulation Methodology
The distributions of the performance measures under various null processes are calculated by

using a simulation methodology. The recorded prices in the database are composed of three
quantities. These quantities are the time ¢; at which the price has been recorded, the ask price



Pask,; and the bid price pyiq ;. The sequence of the tick recording times ¢; is unequally spaced.
The majority of these ticks are concentrated in the periods of high market activity. The real-
time trading model indicators do not directly analyze raw bid or ask prices, but rather the
logarithmic middle prices, x;, are utilized. xz; is defined as x; = (log(pask,;) + (09(Pria;))/2 -
Similarly we define the relative bid-ask spreads, s;, as s; = [0g(Pask,;) — (09(Dbid,j)-

In our trading model simulations, we use a 5 minute interval sampling of the prices in
order to keep the computation within manageable bounds. It is a good compromise between
efficient computation and realistic behavior when compared to the real-time trading model
results generated from all ticks. The main information used by a trading model to update
its indicators is the logarithmic price changes or returns. The return between two consecutive
selected ticks at time ¢;_; and ¢; is defined as r; = x; — ;- and the corresponding elapsed
V-time' between these two ticks is A; = 6; — 6;_; . By construction, the average elapsed
theta time between two ticks, A, is nearly five minutes. Multiple time series from a given
theoretical price generation process need to be generated. To keep the impact of special events
like the data holes in the model behavior, we decided to replace the different bid/ask price
values but always keep the recorded time values. As the different ticks are not exactly regularly
spaced, even in theta time, the average return corresponding to a five minute interval needs ;co

1/E
%)
where the exponent 1/E is called the drift exponent and it is set to 0.5 under the random walk
process. To obtain meaningful results, a simulated time series should have the same average
drift v and average variance o2 as the observed returns. This is done by generating returns, 7;,
corresponding to a five minute interval in ¥-time. In the case of a random walk process, the
returns 7; are computed with, #; = a + ¢; where'! ¢; ~ N(0,0%). When the effective elapsed
time between two ticks, Af;, is not exactly five minutes, we scale again the generated return

: : . S\ 1/2 - - : :
using the same scaling formula, r; = 7; % ) where A# is five minutes. If there is a data

hole, the sum of the generated return 7; is computed until the sum of the added five minute
intervals is larger than the size of the data hole measured in ¥-time. The sum of the returns

be calculated. This is calculated by rescaling the observed return values, r; = r; (

is scaled with the same technique, i.e., >3 ; Abf;n AF"%. The simulated logarithmic prices, 27,
are computed by adding the generated returns 7’;- to the first real logarithmic price value x.
The bid/ask prices are computed by subtracting or adding half the average spread.

The GARCH(1,1) process is written as

Ty =Y + €& (4)

10The high frequency data inherits intraday seasonalities and requires deseasonalization. This paper uses the
deseasonalization methodology advocated in Dacorogna et al. (1993) named as the ¥-time seasonality correction
method. The ¥-time method uses a business time scale and utilizes the average volatility combined with its
scaling behavior to represent the activity of the market. The activity is divided into three geographical markets
namely East Asia, Europe and the North America. A more detailed exposition of the ¥ methodology is presented
in Dacorogna et al. (1993).

n the simulations, € is specified to be normally distributed. We also explored bootstrapping the residuals
of the studied models. The main findings of the paper remain unchanged between these two approaches.




where ¢, = h,}/ta, 2 ~ N(0,1) and hy = ag + arhy_1 + Bre2_,. GARCH specification (Bollerslev
(1986)) allows the conditional second moments of the return process to be serially correlated.
This specification implies that periods of high (low) volatility are likely to be followed by periods
of high (low) volatility. GARCH specification allows the volatility to change over time and the

expected returns are a function of past returns as well as volatility.
The AR(p)-GARCH(1,1) process is written as

P
Tt:’YO“—Z’Vithi"‘et (5)
i=1

where ¢, = h,}mzt 2 ~ N(0,1) and h; = g + a1 + Bie? ;.

The parameters and the normalized residuals of the GARCH(1,1) process are estimated
using the maximum likelihood procedure. The simulated returns are generated from the sim-
ulated normalized residuals and the estimated parameters. The estimated parameters of the
AR(p)-GARCH(1,1) processes together with the simulated residuals are used to generate the
simulated returns for this process. As before, half of the average spread is subtracted (added)

from the simulated price process to obtain the simulated bid (ask) prices.
The AR(p)-HARCH(n) process, Miiller et al. (1997) is written as

P
Ty =Y + Z%‘Tt—z‘ + OtEt,
i=1

n k; 2
O'tQ = Cy + Z C]'O'ti" O'tQJ == IU/jO.tQ*Lj + (1 - ,u/]) (Z Tti) (6)
=1

Jj=1

where k; = 4772+ 1 for j > 1 and k; = 1. k; is chosen so that each horizon corresponds to
meaningful time horizons. In this case, k; = 1,2,...,9 corresponds to 5 minutes, 10 minutes
up to 10 days. The weight parameter p; is chosen such that p; = e~?/(kir1-k;) " This choice
guarantees that the center of the weight is in the middle of a given data interval'?. The details
of this model can be found in Miiller et al. (1997).

The heterogeneous set of relevant interval sizes leads to the process name HARCH for
“Heterogeneous Autoregressive Conditional Heteroskedasticity”. The HARCH process belongs
to the wide ARCH family but differs from all other ARCH-type processes in the unique property
of considering the volatilities of price changes measured over different interval sizes. Due to
this property, the HARCH process is able to capture the hyperbolic decay of the volatility
autocorrelations.

For each replication we start by generating the simulated data a year before the model is
tested. This year is 1989 and it is used to create the history dependency in returns and to
initialize the different trading model indicators.

12In the literature, this model is referred to as AR(p)-EMAHARCH(n) as well.



5. Exponential Moving Averages with Robust Kernels

We turn now to the description of the techniques used to build the trading models. One basic
element is the moving average operator. Indicators based on moving averages are used to
summarize the past behavior of a time series at a given point in time. In many cases, they are
used in the form of a momentum or differential, the difference between two moving averages.
The moving averages can be defined with their weight or kernel function. The choice of the
kernel function has an influence on the behavior of the moving average indicator. A particular
type of moving average called exponential average plays an important role in the technical
analysis literature. Exponential moving average (EMA) operator is a simple average operator
with

e—t/’?’

wema(t; T) - -

an exponential decaying kernel. 7 determines the range of the operator and ¢ indexes the time.
An EMA is written as

t
EMA,(7,t) = / Wema (t — )p(t")dt!

where

e~ (t=t")/T
Wema(t — ;7)) = ———
-

In Figure 1, we present the kernel function of an exponential moving average with 7 = 0.5, 20
and their differential kernel. The sequential computation of exponential moving averages is
simple with the help of a recursion formula and it is more efficient than the computation of any
differently weighted moving averages.

This basic exponential average kernel can be iterated to provide a family of iterated expo-
nential moving average kernels (Miiller (1989, 1991), Zumbach and Miiller (2000))

t; L t/T)" !
Wiema(t; T,M) = n—1! 7 (t/7) .

The larger the n, the more weight is allocated towards the middle range of the kernel. In
the limit as n goes to infinity, the iterated exponential average behaves like a bell-shaped curve.
This implies that the center of the weight is placed in the middle range of the kernel rather
than the most recent past. For instance, a second iterative EMA, EM A2 is written as

EMAX(1,t) = / to(t—t)

—00 T

Wema(t — t)p(t)dt

where
e~ (t=t")/T

Wema(t — ;7)) = -

10



In general, an n iterative EMA, EM A" is written as

1 bttt N
EMA(r,0) = -, I el — ()t

(n—1 Tn—1

where

) e~ (t=t")/T

Wema(t —t'57) = -

In Figure 2, the iterative moving averages for n = 1,2 and n = 4 are plotted. It makes it
clear that as n gets larger the center of the weight distribution moves to the middle part of
the kernel function. A simple arithmetic moving average of length m has a rectangular kernel
which makes it very sensitive to the observations leaving the average when the average moves
over time. More robust classes of kernels that remedy this sensitivity are those that assign
exponentially decaying weights to the observations in the more distant past. These classes
of robust kernels are obtained from the simple arithmetic average of the iterated exponential
average kernels

a7, 1) = (1)) S iema(t: 7', 7) (7)

J=1

where 7/ = 27/(n+1) so that the range, r, is independent of n. The robust exponential moving
average is written as

MA (1) = /t wnalt — T )p(e)de (8)

This is a special case where all weights assigned to each iterative kernel are the same in equation
(7). Examples of these robust kernels are presented in Figure 3 where equally weighted iterative
exponential moving average kernels are plotted up to n = 8. The property of this kernel is a
plateau in the function before it asymptotically declines to zero and it is robust against extreme
variations leaving the average by assigning exponentially decaying weights. Contrary to simple
exponential average, which is very sensitive to the most recent history, it assigns relatively
uniform weights to such new information. Therefore, a robust kernel preserves only the desirable
robustness properties of the simple average and exponential average kernels but ignores their
highly noisy unrobust properties. In Figure 4, a robust differential kernel is presented which
is based on the difference between the exponential moving average with 7 = 1 and a robust
kernel with w,,,(7 = 1,n = 8). By construction, the area under the kernel'® sums to zero.
The differential kernel assigns positive weights to the recent past and negative weights to the
distant past. The real-time trading model of this paper uses a similar robust differential kernel
in the construction of the gearing function.

I3For a full description of this methodology and its theoretical foundations, the reader is referred to Zumbach
and Miiller (2000).

11



6. Trading Models

A distinction should be made between a price change forecast and an actual trading recommen-
dation. A trading recommendation naturally includes a price change forecast, but it must also
account for the specific constraints of the dealer of the respective trading model because a trad-
ing model is constrained by its past trading history and the positions to which it is committed.
A price forecasting model, on the other hand, is not limited to similar types of constraints. A
trading model thus goes beyond predicting a price change such that it must decide if and at
what time a certain action has to be taken.

Trading models offer a real-time analysis of foreign exchange movements and generate ex-
plicit trading recommendations. These models are based on the continuous collection and
treatment of foreign exchange quotes by market makers around-the-clock at the tick-by-tick
frequency level. There are important reasons to utilize high frequency data in the real-time
trading models. The first one is that the model indicators acquire robustness by utilizing the
intraday volatility behavior in their build-up. The second reason is that any position taken by
the model may need to be reversed quickly although these position reversals may not need to
be observed often. The stop-loss objectives need to be satisfied and the high frequency data
provides an appropriate platform for this requirement. Third, the customer’s trading positions
and strategies within a trading model can only be replicated with a high statistical degree of
accuracy by utilizing high frequency data in a real-time trading model. More importantly for
this study, the high frequency data in these models lets us learn the underlying heterogeneous
market microstructure properties of the foreign exchange markets.

The trading models imitate the trading conditions of the real foreign exchange market as
closely as possible. The deals are announced by the system three minutes before the execution
so that a human foreign exchange dealer can monitor a specific trade. After this announcement,
the model picks a price'* from the real-time data feed, executes a deal and calculates its return.
Since these prices are selected in real-time they are not subject to slippage. In order to imitate
real-world trading accurately, the models take transaction costs into account, they do not
trade outside market working hours except for executing stop-loss and they avoid trading at a
frequency which cannot be followed by a human trader. In short, these models act realistically
in a manner which a human dealer can easily follow.

Every trading model is associated with a local market that is identified with a corresponding
geographical region. In turn, this is associated with generally accepted office hours and public
holidays. The local market is defined to be open at any time during office hours provided it

14The execution price does not rely on a single price and is determined by the median price in the last few
minutes of trading.

Slippage is not a factor in a liquid foreign exchange rate if trades are executed when the market is fully open,
as the RTT model does. For instance, several hundred million dollars in USD-DEM can be traded without
incurring slippage. Slippage may occur with the cross rates such as DEM-JPY, where sometimes the frequency
of quote update is low and the actual price in the market is different from what the trading model receives from
the data supplier.
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is neither a weekend nor a public holiday. The O&A trading models presently support the
Zurich, London, Frankfurt, Vienna and New York markets. Typical opening hours for a model
are between 8:00 and 17:30 local time, the exact times depending on the particular local market.

The central part of a trading model is the analysis of the past price movements which are
summarized within a trading model in terms of indicators. The indicators are then mapped
into actual trading positions by applying various rules. For instance, a model may enter a
long position if an indicator exceeds a certain threshold. Other rules determine whether a
deal may be made at all. Among various factors, these rules determine the timing of the
recommendation. A trading model thus consists of a set of indicator computations combined
with a collection of rules. The former are functions of the price history. The latter determine the
applicability of the indicator computations to generating trading recommendations. The model
gives a recommendation not only for the direction but also for the amount of the exposure. The
possible exposures (gearings) are &3 (half exposure), &1 (full exposure) or 0 (no exposure).
The trading model works with a maximum gearing of 1. If the model is fully exposed it cannot
buy or sell anymore but can revert its position.

6.1. The Real Time Trading (RTT) Model

The real-time trading model studied in this paper is classified as a one-horizon, high risk /high
return model. The RTT is a trend-following model and takes positions when an indicator crosses
a threshold. The indicator is momentum based, calculated through specially weighted moving
averages with repeated application of the exponential moving average operator. In the case
of extreme foreign exchange movements, however, the model adopts an overbought/oversold
(contrarian) behavior and recommends taking a position against the current trend. The con-
trarian strategy is governed by rules that take the recent trading history of the model into
account®. The RTT model goes neutral only to save profits or when a stop-loss is reached. Its
profit objective is typically at three percent. When this objective is reached, a gliding stop-loss
prevents the model from losing a large part of the profit already made by triggering its going
neutral when the market reverses.
At any point in time ¢, the gearing function for the RTT is

9i(1p) = sign(Ip(t)) f([L,(2)]) c(L(2))
where

L(t) =p — MA(T = 20)

5Hong and Stein (1999) demonstrate that if information diffuses gradually across a population, prices un-
derreact in the short run. The underreaction means that the momentum traders can profit by trend-chasing.
However, if they can only implement simple univariate strategies, their attempts at arbitrage must lead to
overreaction at longer horizons.

13



where p; is the logarithmic price at time ¢, 7 refers to 20 day equally weighted iterative moving
average and

if (6] >0 1
fUL®D) = < if a<|L{t)]<b 05
if |Ip(t)| <a 0
and
oy = (AL L) <d
“ N —1 aif |I,(t)] > d and g1y - sign(1,(t)) > 0 and r, > P

where a < b < d and r; is the return of the last deal and P the profit objective. The function,
f(|1,(t)]), measures the size of the signal at time ¢ and the function, ¢(|I,|), acts as a contrarian
strategy. The model will enter a contrarian position only if it has reached its profit objective
with a trend following position. In a typical year, the model will play against the trend 2 to 3
times while it deals roughly 60 to 70 times. The hit rate of the contrarian strategy is of about
75 percent.

The parameters a and b depend on the position of the model:

_ a if g1 #0
alt) = {Qa if gtiZO

and b = 2a. The thresholds are also changed if the model is in a position g; # 0 and the
volatility of the price has been low, in the following way:

_ a Zf |pe_pt|>v
at) = {10(1 if |pe—pil <w

where p, is the logarithmic entry price of the last transaction and v is a threshold, generally
quite low < 0.5%. This means that the model is only allowed to change position if the price
has significantly moved from the entry point of the deal.

Since X g and R.g are implicit functions of the gearing, the optimization of the RT'T model
is based on the X g and R.s performance. The parameters subject to optimization are: 7, a,
d and v. There are two other auxiliary parameters: S the stop loss at which an open position
is automatically closed and the profit objective P. These parameters are only optimized at
the end once the others have been found and they are also not allowed to vary all the way
since maximum stop-loss and maximum gain limits are set by the environment!®. The model
is subject to the open-close and holiday closing hours of the Zurich market.

6For more details on the optimization procedure the reader is referred to Pictet et al. (1992).
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7. Empirical Results

The simulated data is the five minute ¥-time series'” from January, 1, 1990 to December 31,
1996 for the three major foreign exchange rates, USD-DEM, USD-CHF (Swiss Franc), USD-
FRF (French Franc), and the cross-rate DEM-JPY (Deutsche Mark - Japanese Yen). The high
frequency data inherits intraday seasonalities and requires deseasonalization. As explained in
section 4, we use the Dacorogna et al. (1993) deseasonalization methodology which is based
on the change of a time scale. Our data set contains 671,040 observations per currency. The
simulations for each currency and process are done for 1000 replications.

The summary of the trading model performance with actual data is presented in Table
2. After the transaction costs, actual data with the USD-DEM, USD-CHF, USD-FRF and
DEM-JPY yield an annualized total return of 9.63, 3.66, 8.20 and 6.43 percent, respectively.
The USD-CHF has the weakest performance relative to the other three currencies. The X g
and R.y performance of the USD-DEM, USD-FRF and DEM-JPY are all positive and range
between 3-4 percent. For the USD-CHF, the X g and R.g are -1.68 and -4.23 percent reflecting
the weakness of its performance.

7.1. Random Walk Process

The results for the random walk process are reported in Table 3 for the p-values!® of all currency
pairs. The methodology of this paper places a historical realization in the simulated distribution
of the performance measure under the assumed process and calculates its one-sided p-value!®.
This indicates whether the historical realization is likely to be generated from this particular
distribution or not. More importantly, it indicates whether the historical performance is likely
to occur in the future. A small p-value (less than 5 percent) indicates that the historical
performance lies in the tail of the distribution and the studied performance distribution is
not representative of the data generating process assuming that the trading model is a good
one. If the process which generates the performance distribution is close to the data generating
process of the foreign exchange returns, the historical performance would lie within two standard
deviations of the performance distribution, indicating that the studied process may be retained
as representative of the data generating process.

The p-values of the annualized return for the USD-DEM, USD-CHF, USD-FRF and DEM-
JPY are 0.3, 8.9, 1.2 and 2.1 percent, respectively. For the USD-DEM and USD-FRF, the

I"The real-time system uses tick-by-tick data for its trading recommendations. The simulations in this paper
are carried out with 5 minute data, as it is computationally expensive to use the tick-by-tick data for the
simulations. The historical performance of the currency pairs from the 5 minute series are within a few tenths
of a percent for all performance measures with the performance of the real-time trading models which utilize
the tick-by-tick data. Therefore, there is no loss of generality from the usage of 5 minute frequency for the
simulations instead of the tick-by-tick feed.

18The p-value represents the fraction of simulations generating a performance measure larger than the original.

9p-value calculations reported in this paper are the simulated p-values obtained from the distribution of one
thousand replications of a given performance measure. For brevity, we simply refer to it as p-value in the text.
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p-values are less than the 2 percent level and it is about 2 percent for the USD-CHEF. In the
case of the USD-CHF, the p-value for the annualized return is 8.9 which is well above the
5 percent level. As indicated in Section 2, the annualized return only utilizes two points of
the equity curve leaving a large degrees of freedom to infinitely many paths that would be
compatible with a given total return. X.4 and R,y are more stringent performance measures
which utilize the entire equity curve in their calculations. The p-values of X .4 and R.g are 0.0;
0.0 percent for USD-DEM; 0.7 and 0.6 percent for USD-CHF'; 0.2 and 0.1 percent for USD-FRF
and 0.2 and 0.1 percent for DEM-JPY. The p-values for the X g and R.g are all less than one
percent rejecting the null hypothesis that the random walk process is consistent with the data
generating process of exchange rate returns.

As presented in Table 2, the maximum drawdowns for the USD-DEM, USD-CHF, USD-FRF
and DEM-JPY are 11.02, 16.08, 11.36 and 12.03 percent. The mean maximum drawdowns from
the simulated random walk processes are 53.79, 63.68, 47.68 and 53.49 for the USD-DEM, USD-
CHF, USD-FRF and DEM-JPY, respectively. The mean of the simulated maximum drawdowns
are three or four times larger than the actual maximum drawdowns. The deal frequencies are
1.68, 1.29, 1.05, 2.14 per week for the four currency pairs from the actual data. The deal
frequencies indicate that the RTT model trades on average no more than 2 trades per week
although the data feed is at the 5 minute frequency. The mean simulated deal frequencies are
2.46, 1.98, 1.65 and 3.08 which are significantly larger than the actual ones.

The values for the maximum drawdown and the deal frequency indicate that the random
walk simulation yields larger maximum drawdown and deal frequency values relative to the
values of these statistics from the actual data. In other words, the random walk simulations
deal more frequently and result in more volatile equity curves on average relative to the equity
curve from the actual data. Correspondingly, the p-values indicate that the random walk process
cannot be the representative of the actual foreign exchange series under these two performance
measures?’.

The simulation results with the random walk process demonstrate that the real-time trading
model is a consistent model. In other words, a process with no mean and a homoskedastic
variance should only perform to generate an average return which would match the mean
transaction costs. This consistency property is an essential ingredient of a trading model and
the real-time trading model passes this consistency test. The means of the simulations indicate
that the distributions are correctly centered at the average transaction costs which is expected
under the random walk process. For instance, the mean simulated deal frequency of the USD-
DEM is 2.46 deals per week or 127.92 (2.46 x 52) deals per year. The percentage spread for the
USD-DEM is 0.00025 which in turn indicates an average transaction cost of -3.20 percent per
year. Given that the mean of the simulated annualized return is -3.44, we can conclude that the
mean of the simulated annualized return distribution is centered around the mean transaction

20Although it is not reported in the tables, the summary statistics of the simulated performance measures
have negligible skewness and statistically insignificant excess kurtosis. This indicates that the distributions of
the performance measures are symmetric and do not exhibit fat tails.
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cost.

The behavior of the performance measures across 7 day, 29 day, 117 day and 301 day horizons
is also investigated with X 4 and R.5. The importance of the performance analysis at various
horizons is that it permits a more detailed analysis of the equity curve at the predetermined
points in time. These horizons correspond approximately to a week, a month, four months
and a year’s performance. The X g and R.4 values indicate that the RT'T model performance
improves over longer time horizons. This is in accordance with the low dealing frequency of the
RTT model. In all horizons, the p-values for the X s and R.4 are less than a half percent for
USD-DEM, USD-FRF and DEM-JPY. For USD-CHF, the p-values are less than 2.4 percent
for all horizons. Overall, the multi-horizon analysis indicates that the random walk process is
not consistent with the data generating process of the foreign exchange returns.

7.2. GARCH(1,1) Process

A more realistic process for the foreign exchange returns is the GARCH(1,1) process which
allows for conditional heteroskedasticity. The GARCH(1,1) estimation results are presented
in Table 4. The numbers in parentheses are the robust standard errors and the GARCH(1,1)
parameters are statistically significant at the 5 percent level for all currency pairs. The Ljung-
Box statistic is calculated up to 12 lags for the standardized residuals and it is distributed with
x? with 12 degrees of freedom. The Ljung-Box statistics indicate no serial correlation for the
USD-DEM and USD-FRF but the USD-FRF and DEM-JPY remain serially correlated. The
variances of the normalized residuals are near one. There is no evidence of skewness but the
excess kurtosis remains large for the residuals.

In Table 6, the results with the GARCH(1,1) process are presented. Since GARCH(1,1)
allows for conditional heteroskedasticity, it is expected that the simulated performance of the
RTT model would yield higher p-values and retain the null hypothesis that GARCH(1,1) is
consistent with the data generating process of the foreign exchange returns. The results, how-
ever, indicate smaller p-values which is in favor of a stronger rejection of this process relative
to the random walk process.

One important reason for the rejection of the GARCH(1,1) process as a representative data
generating process of foreign exchange returns is the aggregation property of the GARCH(1,1)
process®t. The GARCH(1,1) process behaves more like a homoskedastic process as the frequency
is reduced from high to low frequency. Since the RTT model trading frequency is less than
two deals per week, the trading model does not pick up the five minute level heteroskedastic
structure at the weekly frequency. Rather, the heteroskedastic structure behaves as if it is
measurement noise where the model takes positions and this leads to the stronger rejection of
the GARCH(1,1) as a candidate for the foreign exchange data generating process.

2lGuillaume et. al (1995) show that the use of an alternative time scale can eliminate the inefficiencies in
the estimation of a GARCH model caused by intraday seasonal patterns. However, the temporal aggregation
properties of the GARCH models do not hold at the intraday frequencies, revealing the presence of several
time-horizon components.
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In a GARCH process, the conditional heteroskedasticity is captured at the frequency that
the data has been generated. As it is moved away from this frequency to lower frequencies, the
heteroskedastic structure slowly dies away leaving itself to a more homogeneous structure in
time. More elaborate processes, such as the multiple horizon ARCH models (as in the HARCH
process of Miiller et al. (1997)) possess conditionally heteroskedastic structure at all frequencies
in general. The existence of a multiple frequency heteroskedastic structure can be more in line
with the heterogeneous structure of the foreign exchange markets.

The p-values of the annualized return for the USD-DEM, USD-CHF, USD-FRF and DEM-
JPY are 0.4, 8.4, 0.9 and 1.2 percent, respectively. All four currency pairs except USD-CHF
yield p-values which are smaller than 1.3 percent. The X .y and R,y are 0.1 and 0.0 percent
for USD-DEM; 1.4 and 0.9 percent for USD-CHF; 0.1 and 0.1 percent for USD-FRF and 0.4
and 0.4 percent for DEM-JPY.

The historical maximum drawdown and deal frequency of the RTT model is smaller than
those generated from the simulated data. The maximum drawdowns for the USD-DEM, USD-
CHF, USD-FRF and DEM-JPY are 11.02, 16.08, 11.36 and 12.03 for the four currencies. The
mean simulated drawdowns are 53.33, 60.58, 46.00 and 48.77 for the four currencies. The mean
simulated maximum drawdowns are three to four times larger than the historical ones. The
historical deal frequencies are 1.68, 1.29, 1.05 and 2.14. The mean simulated deal frequencies
are 2.39, 1.87, 1.59 and 2.66 for the four currencies. The differences between the historical deal
frequencies and the mean simulated deal frequencies remain large. Therefore, the examination
of the GARCH(1,1) process with the maximum drawdown and the deal frequency indicates that
the historical realizations of these two measures stay outside of the 5 percent level of simulated
distributions of these two performance measures.

The mean simulated deal frequency for the USD-DEM is 2.39 trade per week. In annual
terms, this is approximately 124.28 deals per year. The half spread for the USD-DEM series is
about 0.00025 and this yields 3.11 percent when multiplied with the number of deals per year.
The -3.11 percent return would be the annual transaction cost of the model. For the model to
be profitable, it should yield more than 3.11 percent per year. Table 2 indicates that the RTT
model generates an excess annual return of 9.63 percent whereas the mean of the annualized
return from the GARCH(1,1) process stays at the -3.27 percent level.

The multi-horizon examination of the equity curve with the X .4 and R.g performance mea-
sures indicates that the GARCH(1,1) process as a candidate for the data generation mechanism
is strongly rejected at all horizons from a seven day horizon to a horizon as long as 301 days.
The overall picture coming out of the test is not very different for the GARCH(1,1) than that
of the random walk process.

7.3. AR(4)-GARCH(1,1) Process

A further direction is to investigate whether conditional mean dynamics with GARCH(1,1)
innovations would be a more successful characterization of the dynamics of the high frequency
foreign exchange returns. The conditional means of the foreign exchange returns are estimated
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with four lags of these returns. The additional lags did not lead to substantial increases in the
likelihood value. The results of the AR(4)-GARCH(1,1) are presented in Table 5. The numbers
in parentheses are the robust standard errors and all four lags are statistically significant at the
5 percent level. The negative autocorrelation is large and highly significant for the first lag of
the returns. This is consistent with the high frequency behavior of the foreign exchange returns
and is also observed in Dacorogna et. al (1993). The Ljung-Box statistics indicate no serial
correlation in the normalized residuals. The variances of the normalized residuals are near one.
There is no evidence of skewness but the excess kurtosis remains large for the residuals.

The p-values of the annualized returns are presented in Table 7. They are 0.1, 3.7, 0.3
and 0.5 percent for the USD-DEM, USD-CHF, USD-FRF and DEM-JPY. The results indicate
that the AR(4)-GARCH(1,1) process is also rejected under the RTT model as a representative
data generating process of foreign exchange returns. Here again, a possible explanation of this
failure is the relationship between the dealing frequency of the model and the frequency of the
simulated data. The AR(4)-GARCH(1,1) process is generated at the 5 minutes frequency but
the model dealing frequency is between one or two deals per week. Therefore, the model picks
up the high frequency serial correlation as noise and this serial correlation works against the
process. This cannot be treated as a failure of the RTT model. Rather, this strong rejection
is evidence of the failure of the temporal aggregation properties of the AR(4)-GARCH(1,1)
process at lower frequencies.

The rejection of the AR(4)-GARCH(1,1) process with the X .z and Ry are even stronger
and very much in line with the results for the random walk and the GARCH(1,1). The p-values
of the X.g and R.g are 0.1, 0.0 percent for USD-DEM; 1.9, 2.3 percent for USD-CHF; 0.2,
0.1 percent for USD-FRF and 0.1, 0.1 percent for DEM-JPY. The p-values remain low at all
horizons for the X 4 and R.g. The p-values of the maximum drawdown and the deal frequency
also indicate that in almost all replications the AR(4)-GARCH(1,1) generates higher maximum
drawdowns and deal frequencies.

7.4. AR(4)-HARCH(9) Process

The HARCH findings with the USD-DEM?? are presented in Tables 8 and 9 which indicate
the rejection of this model as well. The HARCH model is designed to capture the asymmetry
in volatility dynamics measured at different frequencies and the long memory of the data
generating process. The comparison of the HARCH model with the GARCH model as in
Miiller et al. (1997) indicates that the HARCH process can extract the tail information more
successfully than the GARCH model. One implication of this is that the simulated series from
the HARCH process will have more extreme observations due to the well-approximated tail
dynamics. Combined with the long memory, it results in large sudden jumps in the simulation
followed by series of large movements.

22ZAR(4)-HARCH(9) process yields the largest likelihood value among other AR-HARCH parametrizations
that we studied. For space limitations, the results with the other currencies are not presented here. These
results are similar to the USD-DEM findings.

19



In the presence of statistically significant four conditional mean parameters, the HARCH
model is a successful characterization of the data dynamics at the 5-minute frequency. However,
the important message that we are trying to convey here is that the 5-minute dynamics is one
particular frequency where we observe the data generating process. The underlying dynamics
is different at different frequencies (see, for instance Miiller et al. (1997) and Andersen and
Bollerslev (1997)), and the 5-minute data frequency is a particular slice of this layered intercon-
nected dynamics. Although the HARCH model is designed to capture the volatility dynamics
at all frequencies, the mean dynamics is only present at the highest frequency.

Since the trading frequency of the models is typically 2-3 times a week, small movements of
prices in the 5-minute data frequency are not significant from the trading model perspective.
Therefore, the conditional mean dynamics of the AR-HARCH model does not help the trading
model to capture possible trends because the movements in the prices are too short lived for the
model to take a position. On the other hand, the simulated series are more volatile due to the
fully absorbed tail dynamics and the long memory effect. In the absence of weekly conditional
mean information (this information is left to the residuals and is unconditional now), the trading
model cannot interpret these large moves and ends up taking consecutive wrong positions. Due
to this reason the skewness and the kurtosis of the trading model statistics, such as X g and
R.g, are larger than with the other processes.

8. Conclusions

We analysed real-time technical trading model behavior in the foreign exchange market by
means of high frequency data and theoretical process simulations. This extensive analysis
of real-time trading models with high frequency data suggests two main conclusions. First,
technical trading models can generate excess returns which are explained neither by traditional
theoretical processes nor by luck. It should be noted that this study was conducted over 7 years
of five minutes data, which represents more than 500,000 independently sampled observations.
This represents an unusually long out-of-sample period that guarantees the robustness of our
conclusions. Since the underlying data generating process for returns is not known, we have
used the largest ex-ante intraday data available to avoid any sample bias. Furthermore, the
trading strategies were also fixed ex-ante to minimize any model selection bias. Under such a
setting, the results indicate that the trading strategies have successfully generated net positive
returns. Whether these results continue to hold for future years needs to be studied separately
in another study, although our other work in progress indicates that our findings in this paper
continue to hold.

Second, the foreign exchange rates contain conditional mean dynamics that are not present in
the random walk, GARCH(1,1), AR-GARCH(1,1) and AR(4)-HARCH(9) processes. Moreover,
the GARCH and HARCH type models are not able to capture the aggregation properties of the
data which are essential in this case since we are using 5 minute price changes for trading models
which trade on average once a week. Therefore, it is not sufficient to develop sophisticated
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statistical processes and study them with data measured at an arbitrary frequency (e.g. one
day, one week, one month, annual etc.). In financial markets, the data generating process is a
complex network of layers where each layer corresponds to a particular frequency (Miiller et al.
(1997)). A successful characterization of such data generating processes should be estimated
with models whose parameters are functions of intra and inter frequency dynamics.
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Figure 1: Exponential Moving Average and Differential Operators
07 T T T T T T

—  w(0.5)
== w(20)
- — - w(0.5)-w(20

0.5

0.4

0.3

Weight

0.2

0.1

Figure 1: Exponential moving average (EMA) operator is a simple average operator
with
eft/‘r

Wema (ta T) = - ;

an exponential decaying kernel. 7 determines the range of the operator and ¢ indexes the
time. An EMA is written as

t

EMAP(T,t):/ Wema (t — t)p(t')dt!

— 00

e t=tyr

where Wemaq (t - t/; T) - T

The figure above demonstrates the kernel function of an exponential moving average
with 7 = 0.5 and 7 = 20 and their differential kernel. The sequential computation of
exponential moving averages is simple with the help of a recursion formula and it is more
efficient than the computation of any differently weighted moving averages.
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Figure 2: Iterative Exponential Moving Average Kernels

Figure 2: An n iterative EMA, EM A™ is written as

N 1 b -yt
EMA}(7,t) = / Wema (t — " )p(t')dt!

m=—1)1J)_ o ™1

o= (t—t")/7

where Wemq(t —t/;57) = -

In the figure above, the iterative moving averages for n = 1,2 and n = 4 are plotted
which indicate that as n gets larger the center of the weight distribution moves to the
middle part of the kernel function.
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Figure 3: Robust Moving Average Kernels
1 T T T T T

Figure 3: The robust exponential moving average is written as

t
MA;)L (T7 t) = / Wma (t - tl7 T, n)p(t/)dt’.

— 00

This is a special case where all weights assigned to each iterative kernel are the same as
in equation (7). In the figure above, the examples of these robust kernels are plotted with
n =1,2,3,4 and n = 8. The property of this kernel is that its function has a plateau
before it asymptotically declines to zero and it is robust to the extreme variations leaving
the average by assigning exponentially decaying weights. It also has the property that it
assigns relatively uniform weights to the most recent history whereas a simple exponential
average would be very sensitive with such new information. Therefore, a robust kernel
has the property that it preserves only the desirable robustness properties of the simple
average and exponential average kernels but ignores their highly noisy unrobust properties.
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Figure 4: A Robust Differential Kernel
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Figure 4: A robust differential kernel is presented which is based on the difference
between the exponential moving average with 7 = 1 and a robust kernel with w;,,(7 =
1,n = 8). By construction, the area under the kernel sums to zero. The differential
kernel assigns positive weights to the recent past and negative weights to the distant
past. The real-time trading model of this paper uses a similar robust differential kernel in
the construction of the gearing function.
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Table 2
Historical Realizations

Description Historical Realizations

USD-DEM USD-CHF USD-FRF DEM-JPY
Annual Return 9.63 3.66 8.20 6.43
Xeffective 3.78 -1.68 4.80 3.81
Reffective 4.43 -4.23 4.95 3.45
Max Drawdown 11.02 16.08 11.36 12.03
Deal frequency 1.68 1.29 1.05 2.14
Horizon: 7 days
Xeffective 3.47 -2.96 3.18 1.87
Reffective 1.80 -4.81 1.97 0.58
Horizon: 29 days
Xeffective 3.27 -4.10 4.41 2.12
Reffective 2.16 -8.97 3.99 0.19
Horizon: 117 days
Xeffective 4.07 -0.67 3.83 4.90
Reffective 5.10 -1.77 3.77 5.17
Horizon: 301 days
Xeffective 4.62 1.94 6.35 5.39
Reffective 6.83 1.71 7.38 5.56

Notes: Historical Realizations present the performance of the trading model with the actual series from January 1,
1990 until December 31, 1996 with 5 minute frequency.
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Table 3
Random Walk Simulations
1990-1996, 5 minute frequency

Description p-value (in %)

USD-DEM USD-CHF USD-FRF DEM-JPY
Annual Return 0.3 8.9 1.2 2.1
Xeffective 0.0 0.7 0.2 0.2
Reffective 0.0 0.6 0.1 0.1
Max Drawdown 100.0 100.0 100.0 100.0
Deal frequency 100.0 100.0 100.0 100.0
Horizon: 7 days
Xeffective 0.0 1.2 0.2 0.3
Reffective 0.0 0.4 0.2 0.2
Horizon: 29 days
Xeffective 0.0 2.2 0.2 0.3
Reffective 0.0 2.3 0.1 0.3
Horizon: 117 days
Xeffective 0.0 0.9 0.2 0.2
Reffective 0.0 0.9 0.1 0.2
Horizon: 301 days
Xeffective 0.0 0.5 0.2 0.1
Reffective 0.0 0.7 0.2 0.3

Notes: The results under columns p-value present the values of these statistics from 1000 replications with the random
walk process. The random walk estimation involves the regression of the actual USD-DEM returns on a constant. A
simulation sample for the random walk series with drift is obtained by sampling from the Gaussian random number
generator with the mean and the standard deviation of the residual series. The simulated residuals are added to the
conditional mean defined by &, to form a new series of returns. The new series of the returns has the same drift
in prices, the same variance and the same unconditional distribution. From the new series of returns, the simulated
price process is recovered recursively by setting the initial price to the true price at the beginning of the sample.
The trading models use the bid and ask prices as inputs. Half of the average spread is subtracted (added) from the
simulated price process to obtain the simulated bid and ask prices. The p-values are reported in percentage terms
(e.g. 8.4 refers to 8.4 percent).
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Table 4

GARCH(1,1) Parameter Estimates, 1990-1996, 5 minute frequency

‘ USD-DEM USD-CHF USD-FRF DEM-JPY
Qg 4.95 (4.23) 0.11 (0.12) 9.38 (7.09) 2.97 (4.03)
o 0.1111 (0.0005) 0.1032 (0.0007) 0.1572 (0.0007) 0.0910 (0.0005)
061 0.8622 (0.0007) 0.8578 (0.0009) 0.8137 (0.0009) 0.8988 (0.0006)
LL 6.45 6.17 6.29 6.34
Q(12) 4810 4201 4256 3089
€52 1.04 1.03 1.07 1.05
€sk -0.07 -0.03 -0.05 0.16
€ku 11.73 7.28 22.93 27.73

Table 5

AR(4)-GARCH(1,1) Parameter Estimates, 1990-1996, 5 minute frequency

[ USD-DEM USD-CHF USD-FRF DEM-JPY
a0 3.90 (3.40) 8.19 (9.03) 7.28 (5.80) 2.92 (3.93)
a1 0.099 (0.0005) 0.0874 (0.0006) 0.1349 (0.0007)  0.088 (0.0005)
B 0.8796 (0.0006) 0.8833 (0.0007) 0.8411 (0.0008) 0.9008 (0.0006)
" -0.176 (0.001)  -0.208 (0.001)  -0.200 (0.002)  -0.130 (0.002)
v -0.011 (0.001)  -0.031 (0.002)  -0.025 (0.002)  -0.090 (0.002)
3 0.003 (0.001)  -0.001 (0.002)  -0.005 (0.002)  -0.005 (0.002)
Y -0.004(0.001)  -0.002 (0.001)  -0.008 (0.002)  -0.010 (0.002)
IL 6.46 6.19 6.30 6.35
Q(12) 623 531 492 374
&) 1.04 1.03 1.07 1.05
Eoh -0.07 -0.04 -0.05 0.15
Eru 12.29 7.86 21.84 27.98

Notes: LL is the average log likelihood value. Q(12) refer to the Ljung-Box portmanteau test for serial correlation
and it is distributed x? with 12 degrees of freedom. The X2 ,5(12) is 21.03. é,2, ésx and éx, are the variance,

skewness and the excess kurtosis of the residuals.
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Table 6
GARCH(1,1) Simulations
1990-1996, 5 minute frequency

Description p-value (in %)

USD-DEM USD-CHF USD-FRF DEM-JPY
Annual Return 0.4 8.4 0.9 1.2
Xeffective 0.1 14 0.1 0.4
Reffective 0.0 0.9 0.1 0.4
Max Drawdown 100.0 100.0 99.9 100.0
Deal frequency 100.0 100.0 100.0 100.0
Horizon: 7 days
Xeffective 0.2 1.6 0.3 0.6
Reffective 0.0 1.0 0.1 0.6
Horizon: 29 days
Xeffective 0.2 2.6 0.1 0.5
Reffective 0.1 2.8 0.0 0.7
Horizon: 117 days
Xeffective 0.1 0.8 0.4 0.2
Reffective 0.1 0.7 0.2 0.2
Horizon: 301 days
Xeffective 0.2 0.9 0.1 0.4
Reffective 0.3 1.5 0.2 0.5

Notes: The results under columns p-value present the values of these statistics from 1000 replications with the
GARCH(1,1) process. The parameters and the normalized residuals are estimated from the foreign exchange returns
using the maximum likelihood procedure. The simulated returns for the GARCH(1,1) process are generated from
the simulated residuals and the estimated parameters. From the new series of returns, the simulated price process
is recovered recursively by setting the initial price to the true price at the beginning of the sample. The trading
models use the bid and ask prices as inputs. Half of the average spread is subtracted (added) from the simulated
price process to obtain the simulated bid and ask prices. The p-values are reported in percentage terms (e.g. 8.4
refers to 8.4 percent).
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Table 7
AR(4)-GARCH(1,1) Simulations
USD-DEM, 1990-1996, 5 minute frequency

Description p-value (in %)

USD-DEM USD-CHF USD-FRF DEM-JPY
Annual Return 0.1 3.7 0.3 0.5
Xeffective 0.1 1.9 0.2 0.1
Reffective 0.0 2.3 0.1 0.1
Max Drawdown 100.0 99.7 99.9 100.0
Deal frequency 100.0 99.9 100.0 100.0
Horizon: 7 days
Xeffective 0.1 2.8 0.2 0.5
Reffective 0.2 2.4 0.2 0.5
Horizon: 29 days
Xeffective 0.1 4.6 0.0 0.4
Reffective 0.1 9.7 0.0 0.4
Horizon: 117 days
Xeffective 0.1 1.3 0.3 0.1
Reffective 0.0 14 0.3 0.1
Horizon: 301 days
Xeffective 0.1 0.8 0.2 0.0
Reffective 0.1 1.1 0.2 0.2

Notes: The results under columns p-value present the values of these statistics from 1000 replications with the
AR(4)-GARCH(1,1) process. The parameters and the normalized residuals are estimated from the foreign exchange
returns using the maximum likelihood procedure. The simulated returns for the AR(4)-GARCH(1,1) process are
generated from the simulated residuals and the estimated parameters. From the new series of returns, the simulated
price process is recovered recursively by setting the initial price to the true price at the beginning of the sample.
The trading models use the bid and ask prices as inputs. Half of the average spread is subtracted (added) from the
simulated price process to obtain the simulated bid and ask prices. The p-values are reported in percentage terms
(e.g. 8.4 refers to 8.4 percent).
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Table 8
AR(4)-HARCH(9) Parameter Estimates, 1990-1996, 5 minute frequency

\ USD-DEM
Iy 2.252 (5.241)
nL 0.1157 (0.0085)
I 0.1670 (0.0147)
I3 0.1925 (0.0108)
I 0.1056 (0.0071)
I5 0.0469 (0.0045)
Is 0.0767 (0.0060)
I; 0.1165 (0.0088)
Is 0.0921 (0.0067)
Iy 0.0421 (0.0042)
o -0.1957 (0.0093)
Yo -0.0373 (0.0057)
¥3 -0.0064 (0.0016)
Y4 -0.0087 (0.0023)
LL 6.48
Q(12) 726
€2 1.04
Esk -0.022
Eku 12.56

Notes: I; = kjc; which is the impact of each time horizon. I value is 1078, The numbers in parentheses are
the standard errors. The standard error of Iy is 107°. LL is the average log likelihood value. Q(12) refer to the
Ljung-Box portmanteau test for serial correlation and it is distributed x? with 12 degrees of freedom. The x2 (5 (12)
is 21.03. €,2, €5, and €y, are the variance, skewness and the excess kurtosis of the residuals.
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Table 9
AR(4)-HARCH(9) Simulations
DEM-JPY, 1990-1996, 5 minute frequency

Description Historical | p-value
Realization | (in%)
Annual Return 6.43 0.2
Xeffective 3.81 0.2
Reffective 3.45 0.1
Max Drawdown 12.03 100.0
Deal frequency 2.14 88.0
Horizon: 7 days
Xeffective 1.87 0.2
Reffective 0.58 0.0
Horizon: 29 days
Xeffective 2.12 0.2
Reffective 0.19 0.0
Horizon: 117 days
Xeffective 4.90 0.1
Reffective 5.17 0.1
Horizon: 301 days
Xeffective 5.39 0.1
Reffective 5.56 0.1

Notes: The column under Historical Realization presents the performance of the trading model with the actual DEM-
JPY series from January 1, 1990 until December 31, 1996 with 5 minute frequency. The results under columns p-value
present the values of these statistics from 1000 replications with the AR(4)-HARCH(9) process. The parameters and
the normalized residuals are estimated from the foreign exchange returns using the maximum likelihood procedure.
The simulated returns for the AR(4)-HARCH(9) process are generated from the simulated residuals and the estimated
parameters. From the new series of returns, the simulated price process is recovered recursively by setting the initial
price to the true price at the beginning of the sample. The trading models use the bid and ask prices as inputs. Half
of the average spread is subtracted (added) from the simulated price process to obtain the simulated bid and ask
prices. The p-values are reported in percentage terms (e.g. 8.4 refers to 8.4 percent).

33



